Hoval Indoor Climate Systems RoofVent[®] KH | KC | KHC

Supply and extract air handling units with efficient air distribution for heating and cooling with central heat and cold generation RoofVent[®] KH | KC | KHC

Design Handbook

RoofVent[®] KH | KC | KHC

	Hoval Indoor Climate Systems Efficient. Flexible. Reliable.	3	Α
	RoofVent[®] KH Supply and extract air handling unit with energy recovery for heating high spaces	7	В
	RoofVent[®] KC Supply and extract air handling unit with energy recovery for heating and cooling high spaces in the 2-pipe system	23	C
	RoofVent[®] KHC Supply and extract air handling unit with energy recovery for heating and cooling high spaces in the 4-pipe system	39	D
	Options	57	E
e	Transport and Installation	69	F
	System design	81	G
	Control systems Hoval TopTronic [®] C → see 'Control Systems for Hoval Indoor Climate Systems' manual		

Α

Hoval Indoor Climate Systems Efficient. Flexible. Reliable.

Hoval

Hoval Indoor Climate Systems

Efficient. Flexible. Reliable.

Hoval indoor climate systems are decentralised systems for heating, cooling and ventilating halls for industrial, commercial and leisure applications. The systems have a modular structure. One system comprises several ventilation units which are spread around the room. These units are equipped with reversible heat pumps and gas-fired heat exchangers for decentralised heat and cold generation, or they heat and cool with a connection to a central energy supply. Tailored control systems complete the system and ensure the effective combination and optimal use of all resources.

Diverse range of units ensures flexibility

Different types of ventilation units can be combined to create the perfect system for the project in question:

- RoofVent[®] supply and extract air handling units
- TopVent[®] supply air units
- TopVent[®] recirculation units

The number of supply and extract air handling units depends on how much fresh air is required in order to create a comfortable atmosphere for people in the building. Recirculation units cover additional heat or cool demand as required. A broad range of unit types and sizes with heating and cooling coils in various output levels means that the overall output of the system can be scaled to whatever level is required.

Specially designed unit versions are also available for halls with particularly humid or oily extract air.

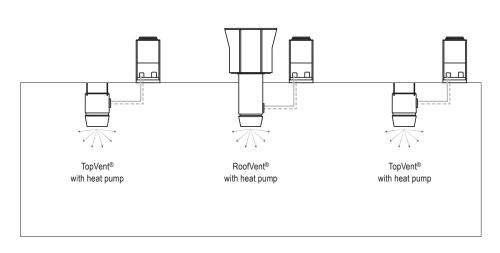
Furthermore, there is a range of units available which have been expressly developed for very specific purposes. ProcessVent units, for example, are coupled with extract air purification systems in industrial halls and recover heat from process air.

Draught-free air distribution

A key feature of Hoval indoor climate units is the patented vortex air distributor, known as the Air-Injector. It is controlled automatically and changes the blowing angle of the air continuously between vertical and horizontal. The highly efficient air supply system has many advantages:

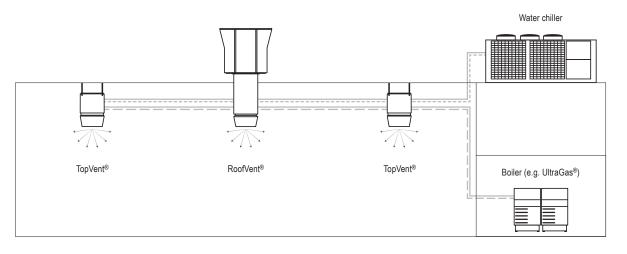
- It provides a high level of comfort during heating and cooling. No draughts develop in the hall.
- The efficient and even air distribution ensures that the indoor climate units cover a large area.
- The Air-Injector keeps the temperature stratification in the room low, thus minimising heat loss through the roof.

Control with specialist expertise

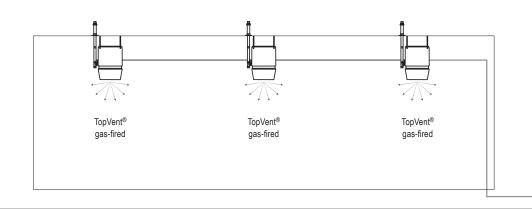

The TopTronic[®] C control system, which was specifically developed for Hoval indoor climate systems, regulates the separate units individually and controls them based on zones. This enables optimal adjustment to the local requirements of the different usage areas in the building. The patented control algorithm optimises energy use and ensures maximum comfort and hygiene levels. Clear interfaces make it easy to connect the system to the building management system.

Simpler control systems are also available for units that are only used for supply air or air recirculation.

Competent and reliable


Hoval will support you and provide expert knowledge throughout all project phases. You can rely on comprehensive technical advice when it comes to planning Hoval indoor climate systems and on the skills of the Hoval technicians during the installation, commissioning and maintenance of the system.

Α



System with decentralised heat and cold generation with heat pump

System with central heat and cold generation

System with decentralised heat generation with gas-fired heat exchanger

RoofVent® KH

Supply and extract air handling unit with energy recovery for heating high spaces

1	Use
2	Construction and operation
3	Technical data
4	Specification texts

В

1 Use

1.1 Intended use

RoofVent[®] KH units are supply and extract air handling units for use in tall, single-floor halls. They have the following functions:

- Fresh air supply
- Extract air removal
- Heating (with connection to a hot water supply)
- Energy recovery with highly efficient plate heat exchanger
- Filtering of the fresh air and the extract air
- Air distribution with adjustable Air-Injector

RoofVent[®] KH units are used in production halls, logistics centres, maintenance halls, shopping centres, sports halls, trade show halls, etc. A system usually consists of several RoofVent[®] units. These are installed distributed throughout the hall roof. The individual units are regulated individually and controlled based on zones. The system flexibly adjusts to local requirements.

Intended use also includes compliance with the operating instructions. Any usage over and above this use is considered to be not as intended. The manufacturer can accept no liability for damage resulting from improper use.

1.2 User group

The units are only allowed to be installed, operated and maintained by authorised and instructed personnel who are well acquainted with the units and are informed about possible dangers.

The operating instructions are for operating engineers and technicians as well as specialists in building, heating and ventilation technology.

2 Construction and operation

2.1 Construction

The RoofVent® KH unit consists of the following components:

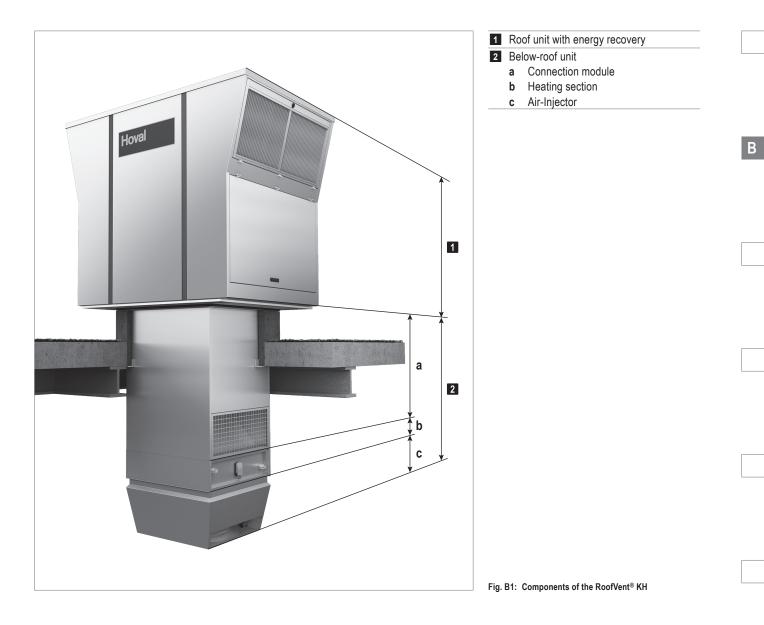
Roof unit with energy recovery

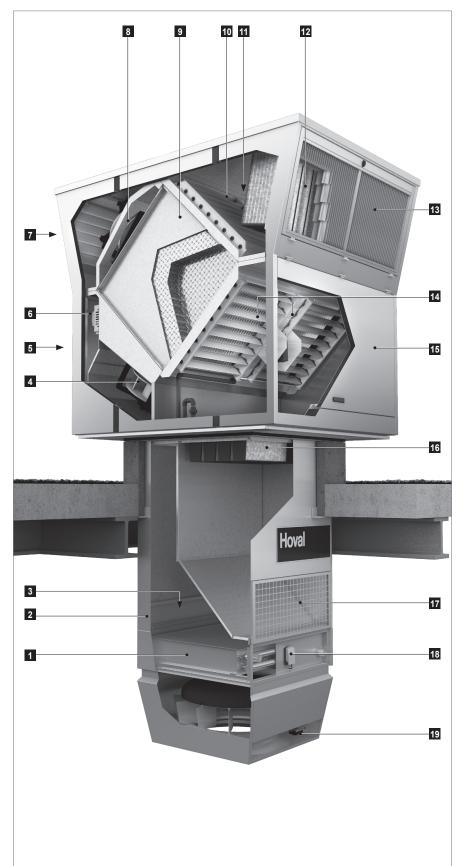
Self-supporting casing for mounting on the roof frame; the double-shell design guarantees good thermal insulation and high stability.

Below-roof unit

The below-roof unit comprises the following components:

- Connection module: Available in 4 lengths per unit size for adapting the unit to local installation conditions
- Heating section: For heating the supply air
- Air-Injector:
 - Patented, automatically adjustable vortex air distributor for draught-free air distribution over a large area


The components are bolted together and can be dismantled. The connections of the coil are located under the extract air grille as standard. The heating section can also be mounted on the connection module turned round.


Thanks to their high capability and efficient air distribution, RoofVent[®] units cover a large area. Therefore, compared to other systems, fewer units are needed to achieve the required conditions. Various units sizes and versions as well as a range of optional equipment offer great flexibility in adjustment to the specific project.

2.2 Air distribution with the Air-Injector

The patented air distributor – called the Air-Injector – is the core element. The air discharge angle is set by means of the infinitely variable guide vanes. It depends on the air flow rate, the mounting height and the temperature difference between the supply air and room air. The air is therefore blown into the room vertically downward, conically or horizontally. This ensures that:

- with each RoofVent[®] unit a large area of the hall can be reached,
- the occupied area is draught-free,
- the temperature stratification in the room is reduced, thus saving energy.

1	Heating coil
2	Coil access panel
3	Connection box access panel
4	Supply air fan
5	Supply air access door
6	Control block
7	Exhaust air access door
8	Exhaust air fan
9	Plate heat exchanger with bypass
	(for performance control and as
	recirculation bypass)
10	Fresh air damper with actuator
11	Bypass damper with actuator
12	Fresh air filter
13	Fresh air access door
14	Extract air and recirculation dampers with
	actuator
15	Extract air access door
16	Extract air filter
17	Extract air grille
18	Frost controller
19	Actuator of the Air-Injector

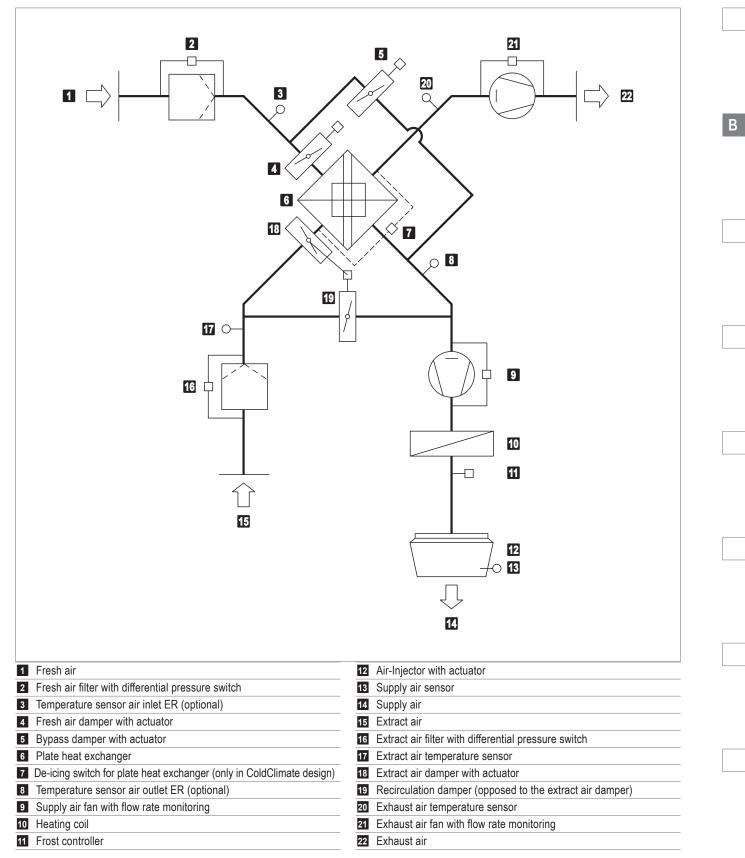


Fig. B3: Function diagram for RoofVent® KH

2.3 Operating modes

The RoofVent® KH has the following operating modes:

- Ventilation
- Ventilation (reduced)
- Air quality
- Recirculation
- Exhaust air
- Supply air
- Standby
- Forced heating

The TopTronic[®] C control system regulates these operating modes automatically for each control zone in accordance with the specifications in the calendar. The following points also apply:

- The operating mode of a control zone can be switched over manually.
- Each RoofVent[®] unit can operate individually in a local operating mode: Off, Recirculation, Supply air, Exhaust air, Ventilation.

Code	Operating mode	Description
VE	 Ventilation The unit blows fresh air into the room and exhausts polluted room air. The room temperature set value day is active. Depending on the temperature conditions, the system continuously controls: the energy recovery the heating 	Supply air fan on *) Exhaust air fan on *) Energy recovery 0-100 % Extract air damper open Recirculation damper closed Heating 0-100 % *) Adjustable flow rate
VEL	Ventilation (reduced) As VE, but the unit only operates with the set minimum values for the supply and exhaust air volumes	Supply air fan MIN Exhaust air fan MIN Energy recovery 0-100 % Extract air damper open Recirculation damper closed Heating 0-100 %
AQ	 Air quality This is the operating mode for demand-controlled ventilation of the room. The room temperature set value day is active. Depending on the temperature conditions, the system continuously controls: the energy recovery the heating Depending on the room air quality or room air humidity, the system operates in one of the following operating states: 	
AQ_REC	 Air quality Recirculation: When air quality is good and air humidity is appropriate, the unit heats the room in recirculation operation. 	Like REC
AQ_ECO	 Air quality Mixed air: When ventilation requirements are medium, the unit heats in mixed air operation. The supply/exhaust air volume is based on the air quality. 	Supply air fanMIN-MAXExhaust air fanMIN-MAXEnergy recovery0-100 %Extract air damper50 %Recirculation damper50 %Heating0-100 %
AQ_VE	 Air quality Ventilation: When ventilation requirements are high or the room air humidity is too high, the unit heats in pure ventilation operation. 	Supply air fan MIN-MAX Exhaust air fan MIN-MAX Energy recovery 0-100 % Extract air damper open Recirculation damper closed Heating 0-100 %

В

Code	Operating mode	Description
REC	Recirculation On/Off recirculation operation with TempTronic algorithm: during heat demand, the unit draws in room air, heats it and blows it back into the room. The room temperature set value day is active. The flow rate is controlled in 2 stages.	Supply air fan 0 / Speed 1 / Speed 2 *) Exhaust air fan off Energy recovery 0 % Extract air damper closed Recirculation damper open
DES	Destratification: To avoid heat build-up under the ceiling, it may be appropriate to switch on the fan when there is no heat demand (either in permanent operation or in on/off operation depending on air temperature under the ceiling, as desired).	 Heating open Heating on *) *) Depending on heat demand
EA	Exhaust air The unit extracts spent room air. There is no room temperature control. Unfiltered fresh air enters the room through open windows and doors or another system provides air supply.	Supply air fan Off Exhaust air fan on *) Energy recovery 0 % Extract air damper open Recirculation damper closed Heating off *) Adjustable flow rate
SA	Supply air The unit blows fresh air into the room. The room temperature set value day is active. Depending on the temperature conditions, the system controls the heating. Spent room air passes through open windows and doors or another system provides extraction.	Supply air fan on *) Exhaust air fan off Energy recovery 0% **) Extract air damper open Recirculation damper closed Heating 0-100% *) Adjustable flow rate **) Fresh air and bypass dampers are open
ST	Standby The unit is normally switched off. The following functions remain active:	
CPR	Cooling protection: If the room temperature drops below the set value for cooling protection, the unit heats up the room in recirculation operation.	Supply air fan MAX Exhaust air fan off Energy recovery 0 % Extract air damper closed Recirculation damper open Heating on
NCS	Night cooling: If the room temperature exceeds the set value for night cooling and the current fresh air temperature permits it, the unit blows cool fresh air into the room and extracts warmer room air.	Supply air fan on *) Exhaust air fan on *) Energy recovery 0 % Extract air damper open Recirculation damper closed Heating off *) Adjustable flow rate
L_OFF	Off (local operating mode) The unit is switched off. Frost protection remains active.	Supply air fan
-	Forced heating The unit draws in room air, warms it and blows it back into the room. For example, it is suitable for heating the hall before taking the control system into operation or if the controller fails during the heating period. Forced heating can be activated and set as required by the Hoval service technician.	Supply air fan MAX Exhaust air fan off Energy recovery 0 % Extract air damper closed Recirculation damper open Heating on

Table B1: RoofVent[®] KH operating modes

3 Technical data

3.1 Type code

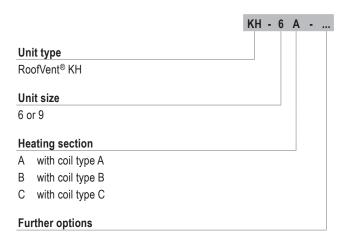


Table B2: Type code

3.2 Application limits

Fresh air temperatures		min.	°C	-30				
Extract air temperature		max.	°C	40				
Extract air relative humidity	у	max.	%rh	50				
Moisture content of extract	t air	max.	g/kg	12.5				
Units in ColdClimate desig	n:							
Fresh air temperature	;	min.	°C	-40				
Extract air temperatu	re	max.	°C	40				
Extract air relative hu	midity	max.	%rh	40				
Moisture content of e	xtract air	max.	g/kg	4				
Supply air temperature		max.	°C	60				
Temperature of the heating	g medium ¹⁾	max.	°C	90				
Pressure of the heating me	edium	max.	kPa	800				
Air flow rate	Size 6	min.	m³/h	3100				
	Size 9	min.	m³/h	5000				
1) Design for higher temperatures on request								

¹⁾ Design for higher temperatures on request

Table B3: Application limits

Notice

The increase of moisture content in the room is limited to a maximum of 2 g/kg.

3.3 Heat recovery system (HRS)

Unit type		KH-6	KH-9
Temperature efficiency, dry	%	57	57
Temperature efficiency, wet	%	61	64

Table B4: Thermal transfer level of the plate heat exchanger

3.4 Air filtration

Filter	Fresh air	Extract air
Class acc. to ISO 16890	ISO coarse 50%	ISO coarse 50%
Class acc. to EN 779	G4	G4
Factory setting of differential pressure switches	250 Pa	300 Pa

Table B5: Air filtration

3.5 Electrical connection

Unit type	KH-6	KH-9	
Supply voltage	V AC	3 × 400	3 × 400
Permitted voltage tolerance	%	± 5	± 5
Frequency	Hz	50	50
Connected load	kW	6.88	10.68
Current consumption max.	Α	11.67	17.67
Series fuse	Α	13	20

Table B6: Electrical connection

3.6 Flow rate, product parameters

Unit type	KH-6			KH-9				
Nominal air flow rate	m³/h	7500		7500 11000				
	m³/s		2.08			3.06		
Floor area covered	727			1283				
Static efficiency of the fans	atic efficiency of the fans %		73.4			68.7		
Coil type		A	В	С	A	В	С	
Nominal external pressure								
Supply air	Pa	290	260	190	170	150	80	
Extract air	Pa	170	170	170	70	70	70	
Effective electric power input kW		3.84	3.91	4.08	7.02	7.09	7.33	

Table B7: Technical data

3.7 Heat output

Fresh	air temp.			-5 °(2			-15 °C					
Size	T	Q	Q _{TG}	H _{max}	ts	$\Delta \mathbf{p}_{\mathbf{W}}$	mw	Q	Q _{TG}	H _{max}	ts	$\Delta \mathbf{p}_{\mathbf{W}}$	mw
JIZE	Туре	kW	kW	m	°C	kPa	l/h	kW	kW	m	°C	kPa	l/h
	А	43.2	21.1	24.0	26.4	10	1857	46.0	13.7	25.0	23.4	12	1974
KH-6	В	63.2	41.1	17.5	34.3	21	2716	67.2	34.9	18.9	31.8	23	2885
	С	103.8	81.7	12.7	50.4	25	4459	110.2	78.0	13.0	48.9	28	4736
	А	77.8	45.4	20.8	30.3	12	3341	87.2	39.9	22.1	28.8	15	3748
KH-9	В	96.2	63.8	17.7	35.2	18	4132	102.3	54.9	19.0	32.8	20	4393
	С	161.1	128.7	12.8	52.7	26	6919	171.1	123.8	13.0	51.4	30	7531
Legend:	51 51	of coil			ts		ply air temper						
	Q = Coil h	eat output			Δp_W = Water pressure drop								
	Q _{TG} = Outpu	it to cover fabri	c heat losses		m	i _w = Wate	er quantity						
	H _{max} = Maxin	num mounting l	height										
Reference:	Heating medium: 80/60 °C												
	Room air:	18 °C											
Extract air: 20 °C / 20 % rel. humidity													
- These oper	ating conditions a	ire not permiss	ible, because	the maximum	supply air te	mperature of	60 °C is exc	eeded.					

Table B8: Heat output

Notice

The output for coverage of the fabric heat losses (Q_{TG}) allows for the ventilation heat requirement (Q_V) and the energy recovery output (Q_{ER}) under the respective air conditions.

The following applies:

 $Q + Q_{ER} = Q_V + Q_{TG}$

В

3.8 Dimensions and weights

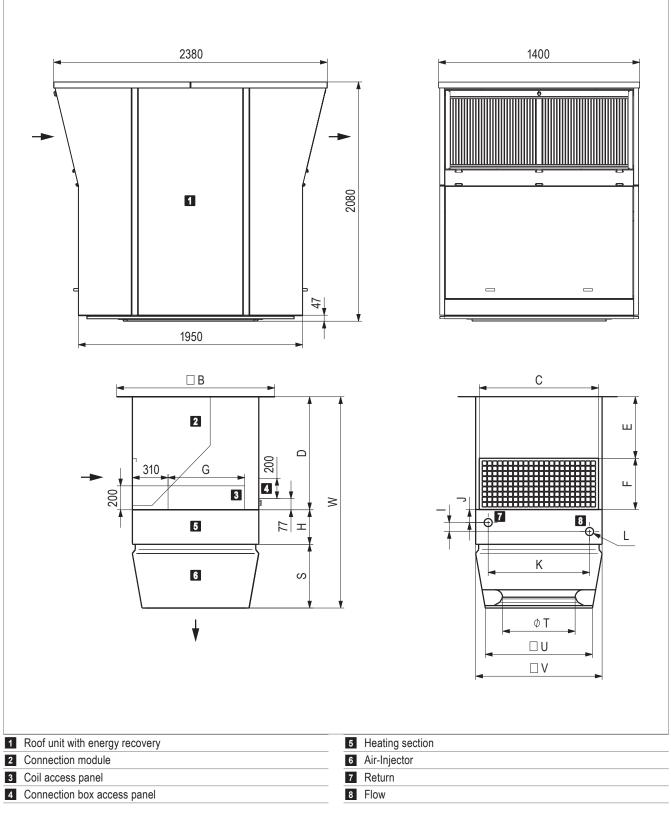


Fig. B4: Dimensional drawing (dimensions in mm)

Unit type	KH-6					КН	-9			
А	mm	1400					17	50		
В	mm		104	10			124	40		
С	mm		84	18			104	48		
F	mm		41	10			4	50		
G	mm		47	70		670				
Н	mm		27	70		300				
S	mm		49	90		570				
Т	mm		50	00			63	30		
U	mm		76	67			93	37		
V	mm		90	00			11(00		
Connection module		V0	V1	V2	V3	V0	V1	V2	V3	
D	mm	940	1190	1440	1940	980	1230	1480	1980	
E	mm	530	780	1030	1530	530	780	1030	1530	
W	mm	1700	1950	2200	2700	1850	2100	2350	2850	

Table B9: Unit dimensions

Unit type		KH-6A	KH-6B	KH-6C	KH-9A	KH-9B	KH-9C
I	mm	78	78	78	78	78	78
J	mm	101	101	101	111	111	111
К	mm	758	758	758	882	882	882
L (internal thread)	"	Rp 1¼	Rp 1¼	Rp 1¼	Rp 1½	Rp 1½	Rp 1½
Water content of the coil		4.6	4.6	7.9	7.4	7.4	12.4

Fig. B5: Dimensions for hydraulic connection of the heating section

Unit type		KH-6A	KH-6B	KH-6C	KH-9A	KH-9B	KH-9C
Total	kg	709	709	716	895	895	905
Roof unit	kg	567	567	567	701	701	701
Below-roof unit	kg	142	142	149	194	194	204
Air-Injector	kg	37	37	37	56	56	56
Heating section	kg	30	30	37	44	44	54
Connection module V0	kg		75		94		
Additional weight V1	kg		+ 11		+ 13		
Additional weight V2 kg		+ 22		+ 26			
Additional weight V3	kg		+ 44			+ 52	

Table B10: Weights of the RoofVent $^{\otimes}$ KH

В

3.9 Sound data

Item				1	2	3	4
	Sound pressure level (at a distance of	of 5 m) ¹⁾	dB(A)	54	67	62	54
	Total sound power level		dB(A)	76	89	84	76
		63 Hz	dB	46	50	48	46
		125 Hz	dB	53	60	58	53
KH-6		250 Hz	dB	71	78	76	71
КП-0	Octove cound newer level	500 Hz	dB	70	80	76	70
	Octave sound power level	1000 Hz	dB	66	85	81	67
		2000 Hz	dB	65	82	76	66
		4000 Hz	dB	60	76	70	60
		8000 Hz	dB	69	81	76	68
	Sound pressure level (at a distance of 5 m) ¹⁾			59	73	69	59
	Total sound power level		dB(A)	81	95	91	81
		63 Hz	dB	53	57	55	53
		125 Hz	dB	60	68	66	60
KH-9		250 Hz	dB	76	85	82	77
КП-9	Octove cound newer level	500 Hz	dB	76	88	84	76
	Octave sound power level	1000 Hz	dB	74	91	87	74
		2000 Hz	dB	71	90	85	71
		4000 Hz	dB	64	83	77	64
		8000 Hz	dB	65	81	76	65
1) with her	hispherical radiation in a low-reflection environme	ent					
		 Fresh ai Exhaust Supply a Extract a 	air air				

Table B11: Sound data

4 Specification texts

RoofVent® KH

Supply and extract air handling unit with energy recovery for heating high spaces. The unit consists of the following components:

- Roof unit with energy recovery
- Below-roof unit:
 - Connection module
 - Heating section
 - Air-injector
- Control components
- Optional components

Roof unit with energy recovery

Self-supporting housing, made of aluminium (outside) and aluzinc sheet and aluminium (inside):

- Weatherproof, corrosion resistant, impact resistant, air-tight
- Low flammability, double-shelled, without heat bridges, with highly efficient insulation made of expanded polystyrene
- Hygienic and easy to maintain because of smooth interior surfaces and large access doors with ageing-resistant, silicone-free sealing materials

The roof unit with energy recovery includes:

Supply air and exhaust air fans:

Designed as maintenance-free, direct-drive radial fans with high-efficiency EC motor, backwards-curved, 3D contoured blades and a free-running rotating wheel made of a high-performance composite material; inflow nozzle with optimised flow; infinitely variable speed; with active pressure registration for constant volumetric flow control and/or demand-controlled volumetric flow adjustment; low-noise; with integrated overload protection.

Fresh air filter:

Designed as highly efficient bag filter elements, class ISO coarse 50 % (G4), fully incinerable, easy to change, including differential pressure switch for filter monitoring.

Extract air filter:

Designed as highly efficient bag filter elements, class ISO coarse 50 % (G4), fully incinerable, easy to change, including differential pressure switch for filter monitoring.

Plate heat exchanger:

Cross-flow plate heat exchanger made of high-quality aluminium as a highly efficient, recuperative heat recovery system, certified by Eurovent, zero-maintenance, without moving parts, failsafe, hygienically harmless, no cross-contamination of impurities and odours. Equipped with bypass, recirculation bypass, condensate drain and condensation trap to the roof. The following dampers are arranged on the exchanger package:

- Fresh air and bypass dampers, each with their own actuator, for infinitely variable control of the heat recovery; with shut-off function by spring return.
- Extract air and recirculation dampers, interlinked in a counter-rotating arrangement with a common actuator, for controlling the recirculation and mixed air operation; with shut-off function by spring return.

All dampers correspond to seal integrity class 2 according to EN 1751.

Access openings:

- Fresh air access door: large access opening with integrated weather and bird protection, configured with quick locking system for easy access to the fresh air filter, the plate heat exchanger as well as the fresh air and bypass dampers.
- Exhaust air access door: large, lockable access opening with integrated weather and bird protection for easy access to the exhaust air filter.
- Extract air access door: large access opening, configured with quick locking system and telescopic support for easy access to the extract air filter, the plate heat exchanger, the condensation trap as well as the extract air and recirculation dampers.
- Supply air access door: large, lockable access opening, configured with telescopic support for easy access to the supply air fan, the control block and the condensate collecting channel.

Control block:

Compact design on an easily accessible mounting plate, comprising:

■ Unit controller as part of the TopTronic[®] C control system:

- Fully wired to the electrical components of the roof unit (fans, actuators, temperature sensors, filter monitoring, differential pressure sensor)
- Pluggable wiring to the control box in the connection module
- High-voltage section:
 - Mains power terminals
 - Isolation switch
- Button for stopping the fans during filter change
 Low-voltage section:
- Low-voltage section:
- Transformer for actuators, sensors and the unit controller
- Externally switchable forced heating
- Externally switchable forced off
- Circuit board with further electronic components for unit control (differential pressure measurement, fuses for the transformer, fuses for low voltage, ...)

Connection module

Housing made of aluzinc sheet, air-tight, flame retardant, hygienic and easy to maintain because of smooth interior surfaces and ageing-resistant, silicone-free sealing materials; configured with extract air grille and access panel for easy access to the coil for maintenance. The connection module contains:

- Laced wiring harness protected in a sheet metal duct, with direct plug connection to the control block in the roof unit
- Connection box made of galvanised sheet steel, configured with circuit board, screw-on cover and cable lead-ins with splash water protection and strain relief; for connection of:
 - Power supply
 - Zone bus
 - All sensors and actuators of the below-roof unit (readyto-connect): frost controller, supply air temperature sensor, Air-Injector actuator
 - Peripheral components (e.g. mixing valves, pumps, ...)
 - Optional components as required

Connection module V1 / V2 / V3:

The connection module is extended for adapting to the local installation situation.

Heating section

Housing made of aluzinc sheet, air-tight, flame retardant, hygienic and easy to maintain because of ageing-resistant, silicone-free sealing materials. The heating section contains:

- The highly efficient heating coil consisting of seamless copper pipes with pressed-on, optimised and profiled aluminium fins and manifolds made of copper; for connection to the hot water supply
- Frost controller

Air-Injector

1 Air-Injector:

Housing made of aluzinc sheet, air-tight, flame retardant, hygienic and easy to maintain because of ageing-resistant, silicone-free sealing materials, with:

- Vortex air distributor with concentric outlet nozzle, adjustable vanes and integrated absorber hood
- Actuator for infinitely variable adjustment of the air distribution from vertical to horizontal for draught-free air distribution in the hall under changing operating conditions
- Supply air temperature sensor

2 Air-Injectors:

 $2x\,\text{Air-Injectors},$ supplied loose; supply air duct for connecting the RoofVent^{ $\!(\!\!\!\!^{\textcircled{}}\!\!\!\!\!^{\textcircled{}}\!\!\!\!\!^{\textcircled{}}\!\!\!\!\!^{\textcircled{}}}\!\!\!\!$ unit to the Air-Injectors on site.

Housing made of aluzinc sheet, air-tight, flame retardant, hygienic and easy to maintain because of ageing-resistant, silicone-free sealing materials, with:

- Vortex air distributor with concentric outlet nozzle, adjustable vanes and integrated absorber hood
- Actuator for infinitely variable adjustment of the air distribution from vertical to horizontal for draught-free air distribution in the hall under changing operating conditions
- Supply air sensor (supplied in the connection module)

Without Air-Injector:

Unit configured without vortex air distributor for connection to an on-site supply air duct and air distribution within the building, supply air temperature sensor supplied in the connection module.

Options for the unit

ColdClimate design:

Units in ColdClimate design are suitable for temperatures down to -40 °C. The following features ensure trouble-free operation of the system:

- Actuators and gear wheels of the fresh air and bypass dampers are provided with a heating facility.
- To protect the plate heat exchanger against freezing, a special de-icing switch overrides the automatic unit control when necessary.
- The water temperature on the coil is also monitored by the frost controller.
- The return temperature of the heating medium is monitored by the return temperature sensor.
- Condensate from the plate heat exchanger is led to a condensate drain connection in the below-roof unit.

Paint finish of below-roof unit:

Choice of external paint finish in RAL colour

Fresh air and exhaust air silencers:

Fresh air silencer configured as add-on part for the roof unit which can be folded downwards, housing made of aluminium with a bird screen and acoustic insulation lining, for reducing sound emissions on the fresh air side; exhaust air silencer configured as add-on part for the roof unit which can be folded downwards, housing made of aluminium with bird screen and easily accessible sound attenuation splitters, optimised flow, with abrasion-resistant and easily cleaned surfaces, non-flammable, hygienically clean with high-quality glass filament cover for reducing sound emissions on the exhaust air side, insertion loss fresh air/exhaust air _____ dB / _____ dB

Supply air and extract air silencers:

Supply air silencer configured as separated component in the below-roof unit, flow-optimised sound attenuation splitters, with abrasion-resistant and easily cleaned surfaces, non-flammable, hygienically clean with high-quality glass filament cover, extract air silencer configured as acoustic insulation lining in the connection module, for reducing sound emission in the room, insertion loss supply air/extract air ______dB / _____dB

Mixing valve:

Mixing valve with modulating rotary actuator, sized for the coil in the unit.

Socket:

230 V socket installed in the control block for simple supply of external, electrical units.

Energy monitoring:

Consisting of 2 additional temperature sensors for recording the air inlet and air outlet temperatures of the plate heat exchanger. Energy monitoring makes it possible to display the energy saved by heat and cool recovery.

Pump control for mixing or injection system:

Electrical components for controlling a mixing or injection circuit in the load circuit.

Return temperature sensor:

Temperature sensor for monitoring the heating medium. If necessary, it triggers frost pre-control at the heating valve to prevent the system possibly being shut down due to frost.

TopTronic[®] C control systems

Zone-based control system ex-works for operation of decentralised Hoval indoor climate systems with optimised use of energy, suitable for demand-driven control of overall systems comprising up to 64 control zones each with up to 15 supply and extract air handling units or supply air units and 10 recirculation units.

The control system is customised and preconfigured ex works. Zone allocation:

Zone 1:	x Unit type	
Zone 2:	x Unit type	
Zone 3:	x Unit type	

System structure:

...

- Unit controller: installed in the particular indoor climate unit
- Zone bus: as serial connection of all unit controllers in one control zone with the zone controller; with robust bus protocol via shielded and twisted-pair bus line (bus cables provided by the client)
- Zone control panel with:
 - System operator terminal
 - Fresh air temperature sensor
 - Zone controllers and room air temperature sensors
 - All components for the electrical power supply and protection
- System bus (Ethernet): for connecting all zone controllers to one another and to the system operator terminal (bus cables provided by the client)

Operation:

- TopTronic[®] C-ST as system operator terminal: touch panel for visualisation and control by web browser via HTML interface, including software for LAN access
- TopTronic[®] C-ZT as zone operator terminal: for simple on-site operation of a control zone (optional)
- Manual operating selector switch (optional)
- Manual operating selector button (optional)
- Operating of the units via building management system via standardised interfaces (optional):
 - BACnet
 - Modbus IP
 - Modbus RTU

Control functions:

- Control of the supply air temperature using room supply air cascade control via sequential control of the energy recovery and the coils (depending on the unit type)
- Demand-driven control of the room air quality by variation of the supply air and exhaust air volume flows with minimum and maximum limit (for supply and extract air handling units, optional)
- Control of the unit including the air distribution according to the specifications of the zone controller

Hoval

Alarms, protection:

- Central alarm management with registration of all alarms (timestamp, priority, status) in an alarm list and alarm memory of the last 50 alarms; forwarding via e-mail can be set in the parameters.
- If there is a failure of communication, bus stations, sensor systems or supply media, each part of the system transitions to a protection mode which safeguards operation.
- Frost protection control of the units with constrained control of protection functions to prevent coil icing (for supply air units as well as supply and extract air handling units)
- A maintenance mode implemented in the control algorithm for testing all physical data points and alarms guarantees high reliability.

Options for the zone control panel:

- Design for heating (KH, KC, KHC)
- Design for cooling (KC, KHC)
- Cooling lock switch (KC, KHC)
- Heating/cooling switch (KC, KHC)
- Alarm lamp
- Socket
- Additional room air temperature sensors (max. 3)
- Combination sensor room air quality, temperature and humidity (protection rating IP20 or IP65)
- Combination sensor fresh air temperature and humidity (protection rating IP65)
- External sensor values
- External set values
- Load shedding input
- Operating selector switch on terminal
- Operating selector button on terminal
- Power supply for air handling unit
- Safety relay
- Control of distributor pump(s), incl. power supply (KH, KC, KHC)

С

RoofVent® KC

Supply and extract air handling unit with energy recovery for heating and cooling high spaces in the 2-pipe system

1	Use	4
2	Construction and operation	4
3	Technical data	0
4	Specification texts	5

1 Use

1.1 Intended use

RoofVent[®] KC units are supply and extract air handling units for use in tall, single-floor halls. They have the following functions:

- Fresh air supply
- Extract air removal
- Heating (with connection to a hot water supply)
- Cooling (with connection to a water chiller)
- Energy recovery with highly efficient plate heat exchanger
- Filtering of the fresh air and the extract air
- Air distribution with adjustable Air-Injector

RoofVent[®] KC units are used in production halls, logistics centres, maintenance halls, shopping centres, sports halls, trade show halls, etc. A system usually consists of several RoofVent[®] units. These are installed distributed throughout the hall roof. The individual units are regulated individually and controlled based on zones. The system flexibly adjusts to local requirements.

Intended use also includes compliance with the operating instructions. Any usage over and above this use is considered to be not as intended. The manufacturer can accept no liability for damage resulting from improper use.

1.2 User group

The units are only allowed to be installed, operated and maintained by authorised and instructed personnel who are well acquainted with the units and are informed about possible dangers.

The operating instructions are for operating engineers and technicians as well as specialists in building, heating and ventilation technology.

2 Construction and operation

2.1 Construction

The RoofVent® KC unit consists of the following components:

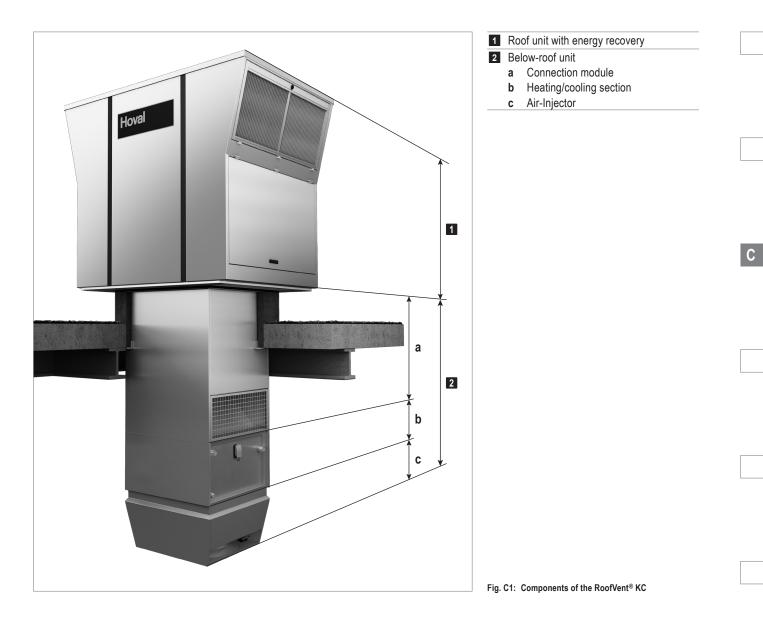
Roof unit with energy recovery

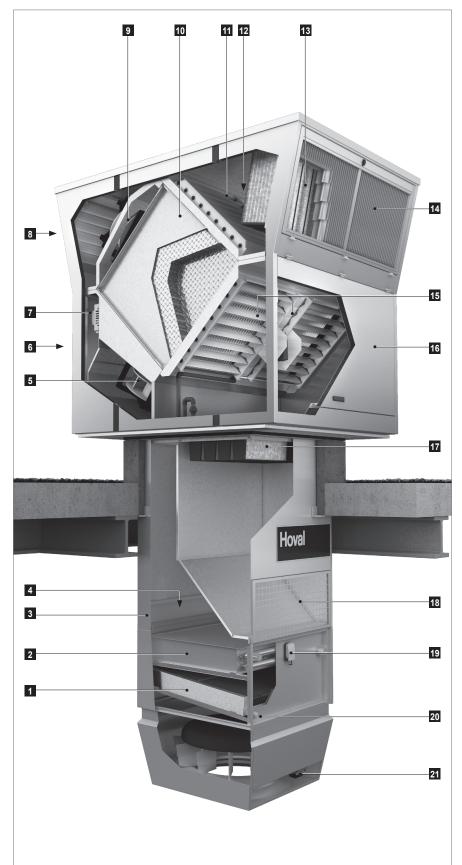
Self-supporting casing for mounting on the roof frame; the double-shell design guarantees good thermal insulation and high stability.

Below-roof unit

The below-roof unit comprises the following components:

- Connection module: Available in 4 lengths per unit size for adapting the unit to local installation conditions
- Heating/cooling section:
- For heating and cooling the supply air in the 2-pipe system Air-Injector:
- Patented, automatically adjustable vortex air distributor for draught-free air distribution over a large area


The components are bolted together and can be dismantled. The connections of the coil are located under the extract air grille as standard. The heating/cooling section can also be mounted on the connection module turned round.


Thanks to their high capability and efficient air distribution, RoofVent[®] units cover a large area. Therefore, compared to other systems, fewer units are needed to achieve the required conditions. Various units sizes and versions as well as a range of optional equipment offer great flexibility in adjustment to the specific project.

2.2 Air distribution with the Air-Injector

The patented air distributor – called the Air-Injector – is the core element. The air discharge angle is set by means of the infinitely variable guide vanes. It depends on the air flow rate, the mounting height and the temperature difference between the supply air and room air. The air is therefore blown into the room vertically downward, conically or horizontally. This ensures that:

- with each RoofVent[®] unit a large area of the hall can be reached,
- the occupied area is draught-free,
- the temperature stratification in the room is reduced, thus saving energy.

1	Condensate separator
2	Heating/cooling coil
3	Coil access panel
4	Connection box access panel
5	Supply air fan
6	Supply air access door
7	Control block
8	Exhaust air access door
9	Exhaust air fan
10	Plate heat exchanger with bypass
	(for performance control and as
	recirculation bypass)
11	Fresh air damper with actuator
12	Bypass damper with actuator
13	Fresh air filter
14	Fresh air access door
15	Extract air and recirculation
	dampers with actuator
16	Extract air access door
17	Extract air filter
18	Extract air grille
19	Frost controller
20	Condensate connection
21	Actuator of the Air-Injector

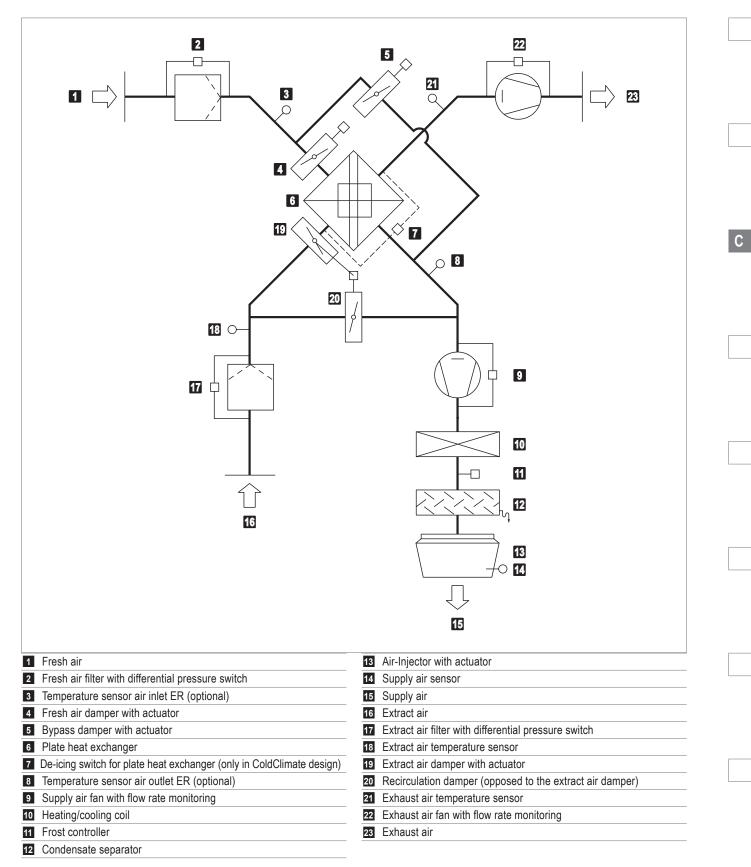


Fig. C3: Function diagram for RoofVent® KC

2.3 Operating modes

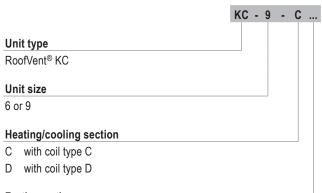
The RoofVent® KC has the following operating modes:

- Ventilation
- Ventilation (reduced)
- Air quality
- Recirculation
- Exhaust air
- Supply air
- Standby
- Forced heating

The TopTronic[®] C control system regulates these operating modes automatically for each control zone in accordance with the specifications in the calendar. The following points also apply:

- The operating mode of a control zone can be switched over manually.
- Each RoofVent[®] unit can operate individually in a local operating mode: Off, Recirculation, Supply air, Exhaust air, Ventilation.

Code	Operating mode	Description
VE	 Ventilation The unit blows fresh air into the room and exhausts polluted room air. The room temperature set value day is active. Depending on the temperature conditions, the system continuously controls: the energy recovery the heating/cooling 	Supply air fan on *) Exhaust air fan on *) Energy recovery 0-100 % Extract air damper open Recirculation damper closed Heating/cooling 0-100 % *) Adjustable flow rate
VEL	Ventilation (reduced) As VE, but the unit only operates with the set minimum values for the supply and exhaust air volumes	Supply air fan MIN Exhaust air fan MIN Energy recovery 0-100 % Extract air damper open Recirculation damper closed Heating/cooling 0-100 %
AQ	Air quality This is the operating mode for demand-controlled ventilation of the room. The room temperature set value day is active. Depending on the temperature conditions, the system continuously controls: the energy recovery the heating/cooling Depending on the room air quality or room air humidity, the system operates in one of the following operating states:	
AQ_REC	 Air quality Recirculation: When air quality is good and air humidity is appropriate, the unit heats or cools the room in recirculation operation. 	Like REC
AQ_ECO	 Air quality Mixed air: When ventilation requirements are medium, the unit heats or cools in mixed air operation. The supply/exhaust air volume is based on the air quality. 	Supply air fanMIN-MAX Exhaust air fanMIN-MAX Energy recovery0-100 % Extract air damper50 % Recirculation damper50 % Heating/cooling0-100 %
AQ_VE	 Air quality Ventilation: When ventilation requirements are high or the room air humidity is too high, the unit heats or cools in pure ventilation operation. 	Supply air fan MIN-MAX Exhaust air fan MIN-MAX Energy recovery


С

Code	Operating mode	Description
REC	Recirculation	Supply air fan0 / Speed 1 / Speed 2 *
	On/Off recirculation operation with TempTronic algorithm: during heat or cool demand,	Exhaust air fan off
	the unit draws in room air, heats or cools it and blows it back into the room. The room	Energy recovery 0 %
		Extract air damper closed
	temperature set value day is active. The flow rate is controlled in 2 stages.	Recirculation damper open
DES	Destratification:	Heating/cooling on *)
	To avoid heat build-up under the ceiling, it may be appropriate to switch on the fan when there is no heat or cool demand (either in permanent operation or in on/off operation depending on air temperature under the ceiling, as desired).	*) Depending on heat or cool demand
		0
EA	Exhaust air	Supply air fan Off
	The unit extracts spent room air. There is no room temperature control.	Exhaust air fan on *)
	Unfiltered fresh air enters the room through open windows and doors or another	Energy recovery0% Extract air damperopen
	system provides air supply.	Recirculation damper closed
		Heating/cooling off
		*) Adjustable flow rate
SA	Supply air	Supply air fanon *)
	The unit blows fresh air into the room. The room temperature set value day is active.	Exhaust air fan off
	Depending on the temperature conditions, the system controls the heating(cooling).	Energy recovery 0 % **)
	Spent room air passes through open windows and doors or another system provides	Extract air damper open
	extraction.	Recirculation damper closed
		Heating/cooling0-100 %
		*) Adjustable flow rate
		**) Fresh air and bypass dampers are open
ST	Standby	
	The unit is normally switched off. The following functions remain active:	
CPR	Cooling protection:	Supply air fan MAX
0	If the room temperature drops below the set value for cooling protection, the unit	Exhaust air fan off
	heats up the room in recirculation operation.	Energy recovery0%
		Extract air damper closed
OPR	Overheating protection:	Recirculation damper open
	If the room temperature rises above the set value for overheating protection, the	Heating/cooling on
	unit cools down the room in recirculation operation. If the temperatures also permit	
	fresh air cooling, the units automatically switches to night cooling (NCS) to save	
	energy.	
NCS	Night cooling:	Supply air fanon *)
100		Exhaust air fan on *)
	If the room temperature exceeds the set value for night cooling and the current	Energy recovery
	fresh air temperature permits it, the unit blows cool fresh air into the room and	Extract air damper open
	extracts warmer room air.	Recirculation damper closed
		Heating/cooling off
		*) Adjustable flow rate
OFF	Off (local operating mode)	Supply air fan off
		Exhaust air fan off
	The unit is switched off. Frost protection remains active.	Energy recovery
		Extract air damperclosed
		Recirculation damper open
		Heating/cooling off
-	Forced heating	Supply air fan MAX
	The unit draws in room air, warms it and blows it back into the room. For example, it	Exhaust air fan off
		Energy recovery0%
	is suitable for heating the hall before taking the control system into operation or if the	
	controller fails during the heating period. Forced heating can be activated and set as required by the Hoval service technician.	Extract air damper closed Recirculation damper open

Table C1: $\operatorname{RoofVent}^{\circledast}\operatorname{KC}$ operating modes

3 Technical data

3.1 Type code

Further options

Table C2: Type code

3.2 Application limits

Fresh air temperatures		min.	°C	-30
Extract air temperature		max.	°C	40
Extract air relative humidity	y	max.	%rh	50
Moisture content of extract	air	max.	g/kg	12.5
Units in ColdClimate desig	n:			
Fresh air temperature	•	min.	°C	-40
Extract air temperature		max.	°C	40
Extract air relative humidity		max.	%rh	40
Moisture content of extract air		max.	g/kg	4
Supply air temperature		max.	°C	60
Temperature of the heating	g medium ¹⁾	max.	°C	90
Pressure of the heating/co	oling medium	max.	kPa	800
Air flow rate	Size 6	min.	m³/h	3100
	Size 9	min.	m³/h	5000
Condensate quantity	Size 6	max.	kg/h	90
	Size 9	max.	kg/h	150
1) Design for higher temperatures	on request			

Table C3: Application limits

3.3 Heat recovery system (HRS)

Unit type		KC-6	KC-9
Temperature efficiency, dry	%	57	57
Temperature efficiency, wet	%	61	64

Table C4: Thermal transfer level of the plate heat exchanger

3.4 Air filtration

Filter	Fresh air	Extract air
Class acc. to ISO 16890	ISO coarse 50%	ISO coarse 50%
Class acc. to EN 779	G4	G4
Factory setting of differential pressure switches	250 Pa	300 Pa

Table C5: Air filtration

3.5 Electrical connection

Unit type		KC-6	KC-9
Supply voltage	V AC	3 × 400	3 × 400
Permitted voltage tolerance	%	± 5	± 5
Frequency	Hz	50	50
Connected load	kW	6.98	10.78
Current consumption max.	A	11.67	17.67
Series fuse	A	13	20

Table C6: Electrical connection

3.6 Flow rate, product parameters

Unit type		KC-6		KC-9	
Nominal air flow rate	m³/h	7000		10500	
	m³/s	1.94	2.9		
Floor area covered	m²	661	11		
Static efficiency of the fans	%	73.4	68.7		
Coil type	С	С	D		
Nominal external pressure					
Supply air	Pa	340	180	130	
Extract air	Pa	390	250	250	
Effective electric power input	kW	3.47	6.71	6.88	

Table C7: Technical data

The increase of moisture content in the room is limited to a maximum of 2 g/kg.

С

3.7 Heat output

Fresh air temp5 °C					С			-15 °C						
0:	Tune	Q	Q _{TG}	H _{max}	ts	Δp_W	m _w	Q	Q _{TG}	H _{max}	ts	$\Delta \mathbf{p}_{\mathbf{W}}$	m _w	
Size	Туре	kW	kW	m	°C	kPa	l/h	kW	kW	m	°C	kPa	l/h	
KC-6	С	99.3	78.7	11.8	51.4	23	4266	105.4	75.3	12.0	50.0	26	4530	
1/0 0	С	157.1	126.2	12.1	53.7	26	6750	166.9	121.7	12.3	52.4	29	7171	
KC-9	D	_	_	_	_	_	-	_	_	_	_	_	_	
Legend:	Туре = Туре	of coil				t _s = Sup	ply air tempe	rature						
	Q = Coil h	eat output				∆p _W = Wat	er pressure d	rop						
	Q _{TG} = Outpu	it to cover fabr	ic heat losses	;		m _W = Wat	er quantity							
	H _{max} = Maxin	num mounting	height											
Reference:	Heating mediun	n: 80/60 °C												
	Room air: 18 °C													
	Extract air:	20 °C / 20 °	% rel. humidit	у										
- These ope	rating conditions a	ire not permiss	sible, because	the maximur	n supply air t	emperature o	f 60 °C is exc	eeded.						

Table C8: Heat output

Notice

The output for coverage of the fabric heat losses (Q_{TG}) allows for the ventilation heat requirement (Q_V) and the energy recovery output (Q_{ER}) under the respective air conditions. The following applies:

 $Q + Q_{ER} = Q_V + Q_{TG}$

3.8 Cooling capacities

Size	Turne	Q _{sen}	Q _{tot}	Q _{TG}	ts	$\Delta \mathbf{p}_{\mathbf{W}}$	m _w	m _c	Q _{sen}	Q _{tot}	Q _{TG}	ts	$\Delta \mathbf{p}_{\mathbf{W}}$	mw	m _c
Size	Туре	kW	kW	kW	°C	kPa	l/h	kg/h	kW	kW	kW	°C	kPa	l/h	kg/h
Fresh air	conditions			28	°C / 40 9	6			28 °C / 60 %						
KC-6	С	24.0	26.2	15.2	15.5	22	3750	3.2	21.4	40.6	12.6	16.6	52	5809	28.2
KOO	С	37.8	41.3	24.7	15.0	24	5919	5.1	33.8	62.8	20.6	16.2	55	8998	42.7
KC-9	D	45.5	52.7	32.3	12.9	23	7554	10.7	41.7	81.1	28.6	13.9	54	11618	57.9
Fresh air conditions 32			2 °C / 40 %			32 °C / 60 %									
KC-6	С	29.2	42.1	20.4	17.3	56	6022	18.9	26.6	56.4	17.9	18.4	101	8073	43.7
1/0 0	С	46.0	66.3	32.8	16.7	61	9493	29.8	42.0	87.7	28.8	17.8	107	12560	67.2
KC-9	D	56.2	84.3	43.1	13.8	58	12065	41.2	52.5	112.5	39.3	14.9	104	16113	88.3
Legend:	Q _{tot} = Total Q _{TG} = Outpu								re drop						
Reference:	At fresh air ter Room air: 22	boling medium: 6/12 °C At fresh air temperature 28 °C: At fresh air temperature 28 °C: At fresh air temperature 28 °C Room air: 22 °C At fresh air temperature 28 °C Room air: 22 °C Extract air: 28 °C						nidity							

Table C9: Cooling capacity

Notice

The output for coverage of the fabric heat losses (Q_{TG}) allows for the ventilation heat requirement (Q_V) and the energy recovery output (Q_{ER}) under the respective air conditions. The following applies:

 $Q + Q_{ER} = Q_V + Q_{TG}$

3.9 Dimensions and weights

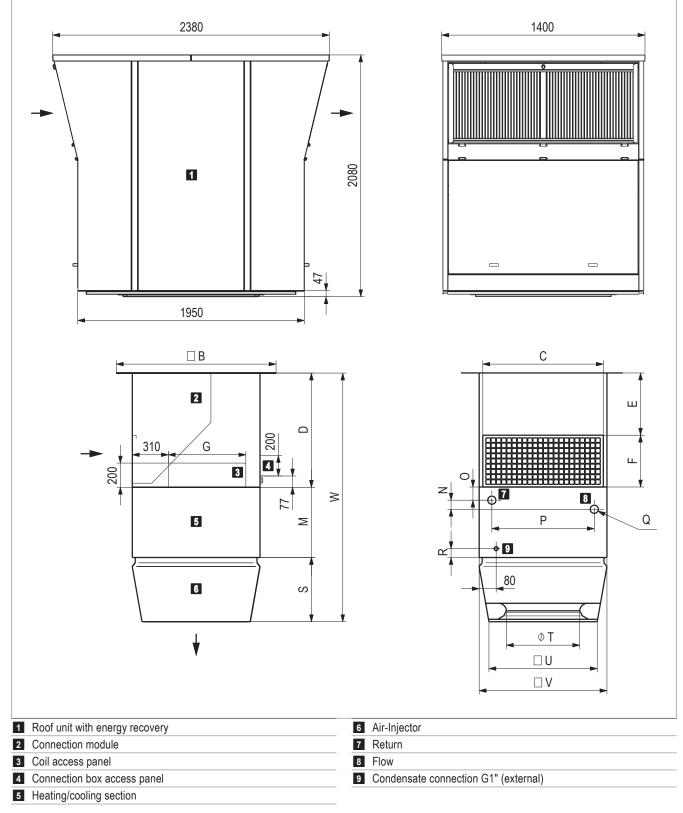


Fig. C4: Dimensional drawing (dimensions in mm)

С

Unit type		KC	-6		KC-9					
A	mm	1400				1750				
В	mm		104	10			124	0		
С	mm		84	18			104	8		
F	mm	410					45	0		
G	mm	470				670				
М	mm	620				610				
S	mm		49	90		570				
Т	mm		50)0		630				
U	mm		76	67		937				
V	mm		90	00		1100				
Connection module		V0	V0 V1			V0	V1	V2	V3	
D	mm	940	1190	1440	1940	980	1230	1480	1980	
E	mm	530	780	1030	1530	530	780	1030	1530	
W	mm	2050	2300	2550	3050	2160	2410	2660	3160	

Table C10: Unit dimensions

Unit type		KC-6-C	KC-9-C	KC-9-D
Ν	mm	78	78	95
0	mm	123	92	83
Р	mm	758	882	882
Q (internal thread)	"	Rp 1¼	Rp 1½	Rp 2
R	mm	54	53	53
Water content of the coil		7.9	12.4	19.2

Fig. C5: Dimensions for hydraulic connection of the cooling section

Unit type		KC-6-C	KC-9-C	KC-9-D
Total	kg	749	953	972
Roof unit	kg	567	701	701
Below-roof unit	kg	182	252	271
Air-Injector	kg	37	56	56
Heating/cooling section	kg	70	102	121
Connection module V0	kg	75		94
Additional weight V1	kg	+ 11	+	11
Additional weight V2	kg	+ 22	+	22
Additional weight V3	kg	+ 44	+ -	44

Table C11: Weights of the RoofVent® KC

3.10 Sound data

Operati	ng mode		VE				
ltem				1	2	3	4
	Sound pressure level (at a dista	nce of 5 m) ¹⁾	dB(A)	52	65	60	52
	Total sound power level	Total sound power level					
		63 Hz	dB	45	48	46	45
		125 Hz	dB	53	59	57	53
KC-6		250 Hz	dB	69	76	73	69
NC-0	Ostava sound newar level	500 Hz	dB	69	79	75	69
	Octave sound power level	1000 Hz	dB	65	83	79	65
		2000 Hz	dB	64	80	75	64
		4000 Hz	dB	59	75	69	59
		8000 Hz	dB	65	78	72	65
	Sound pressure level (at a dista	Sound pressure level (at a distance of 5 m) ¹⁾					
	Total sound power level	dB(A)	80	94	90	80	
		63 Hz	dB	52	56	54	52
		125 Hz	dB	59	67	65	60
KC-9		250 Hz	dB	75	83	81	75
NG-9	Octave sound power level	500 Hz	dB	76	87	83	76
		1000 Hz	dB	73	90	86	73
		2000 Hz	dB	70	89	84	69
		4000 Hz	dB	63	82	76	63
		8000 Hz	dB	66	81	75	66
1) with he	mispherical radiation in a low-reflection envi	ronment					
		 Fresh a Exhaus Supply Extract 	t air air				

Table C12: Sound data

С

4 Specification texts

RoofVent® KC

Supply and extract air handling unit with energy recovery for heating and cooling high spaces in the 2-pipe system. The unit consists of the following components:

- Roof unit with energy recovery
- Below-roof unit:
 - Connection module
 - Heating/cooling section
 - Air-Injector
- Control components
- Optional components

Roof unit with energy recovery

Self-supporting housing, made of aluminium (outside) and aluzinc sheet and aluminium (inside):

- Weatherproof, corrosion resistant, impact resistant, air-tight
- Low flammability, double-shelled, without heat bridges, with highly efficient insulation made of expanded polystyrene
- Hygienic and easy to maintain because of smooth interior surfaces and large access doors with ageing-resistant, silicone-free sealing materials

The roof unit with energy recovery includes:

Supply air and exhaust air fans:

Designed as maintenance-free, direct-drive radial fans with high-efficiency EC motor, backwards-curved, 3D contoured blades and a free-running rotating wheel made of a high-performance composite material; inflow nozzle with optimised flow; infinitely variable speed; with active pressure registration for constant volumetric flow control and/or demand-controlled volumetric flow adjustment; low-noise; with integrated overload protection.

Fresh air filter:

Designed as highly efficient bag filter elements, class ISO coarse 50 % (G4), fully incinerable, easy to change, including differential pressure switch for filter monitoring.

Extract air filter:

Designed as highly efficient bag filter elements, class ISO coarse 50 % (G4), fully incinerable, easy to change, including differential pressure switch for filter monitoring.

Plate heat exchanger:

Cross-flow plate heat exchanger made of high-quality aluminium as a highly efficient, recuperative heat recovery system, certified by Eurovent, zero-maintenance, without moving parts, failsafe, hygienically harmless, no cross-contamination of impurities and odours. Equipped with bypass, recirculation bypass, condensate drain and condensation trap to the roof. The following dampers are arranged on the exchanger package:

- Fresh air and bypass dampers, each with their own actuator, for infinitely variable control of the heat recovery; with shut-off function by spring return.
- Extract air and recirculation dampers, interlinked in a counter-rotating arrangement with a common actuator, for controlling the recirculation and mixed air operation; with shut-off function by spring return.

All dampers correspond to seal integrity class 2 according to EN 1751.

Access openings:

- Fresh air access door: large access opening with integrated weather and bird protection, configured with quick locking system for easy access to the fresh air filter, the plate heat exchanger as well as the fresh air and bypass dampers.
- Exhaust air access door: large, lockable access opening with integrated weather and bird protection for easy access to the exhaust air filter.
- Extract air access door: large access opening, configured with quick locking system and telescopic support for easy access to the extract air filter, the plate heat exchanger, the condensation trap as well as the extract air and recirculation dampers.
- Supply air access door: large, lockable access opening, configured with telescopic support for easy access to the supply air fan, the control block and the condensate collecting channel.

Control block:

Compact design on an easily accessible mounting plate, comprising:

- Unit controller as part of the TopTronic[®] C control system:
 - Fully wired to the electrical components of the roof unit (fans, actuators, temperature sensors, filter monitoring, differential pressure sensor)
 - Pluggable wiring to the control box in the connection module
- High-voltage section:
 - Mains power terminals
 - Isolation switch
 - Button for stopping the fans during filter change
- Low-voltage section:
 - Transformer for actuators, sensors and the unit controller
 - Externally switchable forced heating
 - Externally switchable forced off
- Circuit board with further electronic components for unit control (differential pressure measurement, fuses for the transformer, fuses for low voltage, ...)

Connection module

Housing made of aluzinc sheet, air-tight, flame retardant, hygienic and easy to maintain because of smooth interior surfaces and ageing-resistant, silicone-free sealing materials; configured with extract air grille and access panel for easy access to the coil for maintenance. The connection module contains:

- Laced wiring harness protected in a sheet metal duct, with direct plug connection to the control block in the roof unit
- Connection box made of galvanised sheet steel, configured with circuit board, screw-on cover and cable lead-ins with splash water protection and strain relief; for connection of:
 - Power supply
 - Zone bus
 - All sensors and actuators of the below-roof unit (readyto-connect): frost controller, supply air temperature sensor, Air-Injector actuator
 - Peripheral components (e.g. mixing valves, pumps, ...)
 - Optional components as required

Connection module V1 / V2 / V3:

The connection module is extended for adapting to the local installation situation.

Heating/cooling section

Housing made of aluzinc sheet, air-tight, flame retardant, hygienic and easy to maintain because of ageing-resistant, silicone-free sealing materials, internally insulated with closepored polyurethane. The heating/cooling section contains:

- The highly efficient heating/cooling coil consisting of seamless copper pipes with pressed-on, optimised and profiled aluminium fins and manifolds made of copper; for connection to the hot water and cold water supply
- Frost controller
- The pull-out condensate separator with collecting channel, made of high-quality corrosion-resistant material, with a downslope in all directions for rapid draining
- The condensate trap for connecting to a condensate drain (supplied).

Air-Injector

1 Air-Injector:

Housing made of aluzinc sheet, air-tight, flame retardant, hygienic and easy to maintain because of ageing-resistant, silicone-free sealing materials, internally insulated with closepored polyethylene, with:

- Vortex air distributor with concentric outlet nozzle, adjustable vanes and integrated absorber hood
- Actuator for infinitely variable adjustment of the air distribution from vertical to horizontal for draught-free air distribution in the hall under changing operating conditions
- Supply air temperature sensor

2 Air-Injectors:

2x Air-Injectors, supplied loose; supply air duct for connecting the RoofVent[®] unit to the Air-Injectors on site.

Housing made of aluzinc sheet, air-tight, flame retardant, hygienic and easy to maintain because of ageing-resistant, silicone-free sealing materials, internally insulated with closepored polyethylene, with:

- Vortex air distributor with concentric outlet nozzle, adjustable vanes and integrated absorber hood
- Actuator for infinitely variable adjustment of the air distribution from vertical to horizontal for draught-free air distribution in the hall under changing operating conditions
- Supply air sensor (supplied in the connection module)

Without Air-Injector:

Unit configured without vortex air distributor for connection to an on-site supply air duct and air distribution within the building, supply air temperature sensor supplied in the connection module.

Options for the unit

ColdClimate design:

Units in ColdClimate design are suitable for temperatures down to -40 °C. The following features ensure trouble-free operation of the system:

- Actuators and gear wheels of the fresh air and bypass dampers are provided with a heating facility.
- To protect the plate heat exchanger against freezing, a special de-icing switch overrides the automatic unit control when necessary.
- The water temperature on the coil is also monitored by the frost controller.
- The return temperature of the heating medium is monitored by the return temperature sensor.
- Condensate from the plate heat exchanger is led to a condensate drain connection in the below-roof unit.

Paint finish of below-roof unit:

Choice of external paint finish in RAL colour

Fresh air and exhaust air silencers:

Fresh air silencer configured as add-on part for the roof unit which can be folded downwards, housing made of aluminium with a bird screen and acoustic insulation lining, for reducing sound emissions on the fresh air side; exhaust air silencer configured as add-on part for the roof unit which can be folded downwards, housing made of aluminium with bird screen and easily accessible sound attenuation splitters, optimised flow, with abrasion-resistant and easily cleaned surfaces, non-flammable, hygienically clean with high-quality glass filament cover for reducing sound emissions on the exhaust air side, insertion loss fresh air/exhaust air

_____ dB / _____ dB

Supply air and extract air silencers:

Supply air silencer configured as separated component in the below-roof unit, flow-optimised sound attenuation splitters, with abrasion-resistant and easily cleaned surfaces, non-flammable, hygienically clean with high-quality glass filament cover, extract air silencer configured as acoustic insulation lining in the connection module, for reducing sound emission in the room, insertion loss supply air/extract air _____ dB / _____ dB

Mixing valve:

Mixing valve with modulating rotary actuator, sized for the coil in the unit.

Condensate pump:

Consisting of a centrifugal pump and a drip tray, max. delivery rate of 150 l/h with a delivery head of 3 m.

Socket:

230 V socket installed in the control block for simple supply of external, electrical units.

Energy monitoring:

Consisting of 2 additional temperature sensors for recording the air inlet and air outlet temperatures of the plate heat exchanger. Energy monitoring makes it possible to display the energy saved by heat and cool recovery.

Pump control for mixing or injection system:

Electrical components for controlling a mixing or injection circuit in the load circuit.

Return temperature sensor:

Temperature sensor for monitoring the heating medium. If necessary, it triggers frost pre-control at the heating valve to prevent the system possibly being shut down due to frost.

TopTronic[®] C control systems

Zone-based control system ex-works for operation of decentralised Hoval indoor climate systems with optimised use of energy, suitable for demand-driven control of overall systems comprising up to 64 control zones each with up to 15 supply and extract air handling units or supply air units and 10 recirculation units.

The control system is customised and preconfigured ex works. Zone allocation:

Zone 1:	x Unit type	
Zone 2:	x Unit type	
Zone 3:	x Unit type	

System structure:

...

- Unit controller: installed in the particular indoor climate unit
- Zone bus: as serial connection of all unit controllers in one control zone with the zone controller; with robust bus protocol via shielded and twisted-pair bus line (bus cables provided by the client)
- Zone control panel with:
 - System operator terminal
 - Fresh air temperature sensor
 - Zone controllers and room air temperature sensors
 - All components for the electrical power supply and protection
- System bus (Ethernet): for connecting all zone controllers to one another and to the system operator terminal (bus cables provided by the client)

Operation:

- TopTronic[®] C-ST as system operator terminal: touch panel for visualisation and control by web browser via HTML interface, including software for LAN access
- TopTronic[®] C-ZT as zone operator terminal: for simple on-site operation of a control zone (optional)
- Manual operating selector switch (optional)
- Manual operating selector button (optional)
- Operating of the units via building management system via standardised interfaces (optional):
 - BACnet
 - Modbus IP
 - Modbus RTU

Control functions:

- Control of the supply air temperature using room supply air cascade control via sequential control of the energy recovery and the coils (depending on the unit type)
- Demand-driven control of the room air quality by variation of the supply air and exhaust air volume flows with minimum and maximum limit (for supply and extract air handling units, optional)
- Control of the unit including the air distribution according to the specifications of the zone controller

37

Alarms, protection:

- Central alarm management with registration of all alarms (timestamp, priority, status) in an alarm list and alarm memory of the last 50 alarms; forwarding via e-mail can be set in the parameters.
- If there is a failure of communication, bus stations, sensor systems or supply media, each part of the system transitions to a protection mode which safeguards operation.
- Frost protection control of the units with constrained control of protection functions to prevent coil icing (for supply air units as well as supply and extract air handling units)
- A maintenance mode implemented in the control algorithm for testing all physical data points and alarms guarantees high reliability.

Options for the zone control panel:

- Design for heating (KH, KC, KHC)
- Design for cooling (KC, KHC)
- Cooling lock switch (KC, KHC)
- Heating/cooling switch (KC, KHC)
- Alarm lamp
- Socket
- Additional room air temperature sensors (max. 3)
- Combination sensor room air quality, temperature and humidity (protection rating IP20 or IP65)
- Combination sensor fresh air temperature and humidity (protection rating IP65)
- External sensor values
- External set values
- Load shedding input
- Operating selector switch on terminal
- Operating selector button on terminal
- Power supply for air handling unit
- Safety relay
- Control of distributor pump(s), incl. power supply (KH, KC, KHC)

RoofVent® KHC

Supply and extract air handling unit with energy recovery for heating and cooling high spaces in the 4-pipe system

1	Use	40
2	Construction and operation	40
3	Technical data	46
4	Specification texts	52

1 Use

1.1 Intended use

RoofVent[®] KHC units are supply and extract air handling units for use in tall, single-floor halls. They have the following functions:

- Fresh air supply
- Extract air removal
- Heating (with connection to a hot water supply)
- Cooling (with connection to a water chiller)
- Energy recovery with highly efficient plate heat exchanger
- Filtering of the fresh air and the extract air
- Air distribution with adjustable Air-Injector

RoofVent[®] KHC units are used in production halls, logistics centres, maintenance halls, shopping centres, sports halls, trade show halls, etc. A system usually consists of several RoofVent[®] units. These are installed distributed throughout the hall roof. The individual units are regulated individually and controlled based on zones. The system flexibly adjusts to local requirements.

Intended use also includes compliance with the operating instructions. Any usage over and above this use is considered to be not as intended. The manufacturer can accept no liability for damage resulting from improper use.

1.2 User group

The units are only allowed to be installed, operated and maintained by authorised and instructed personnel who are well acquainted with the units and are informed about possible dangers.

The operating instructions are for operating engineers and technicians as well as specialists in building, heating and ventilation technology.

2 Construction and operation

2.1 Construction

The RoofVent® KHC unit consists of the following components:

Roof unit with energy recovery

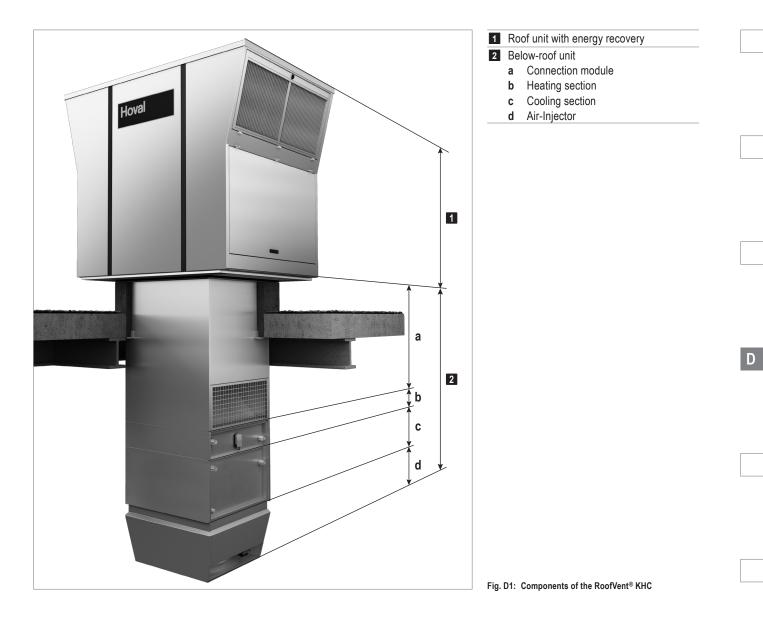
Self-supporting casing for mounting on the roof frame; the double-shell design guarantees good thermal insulation and high stability.

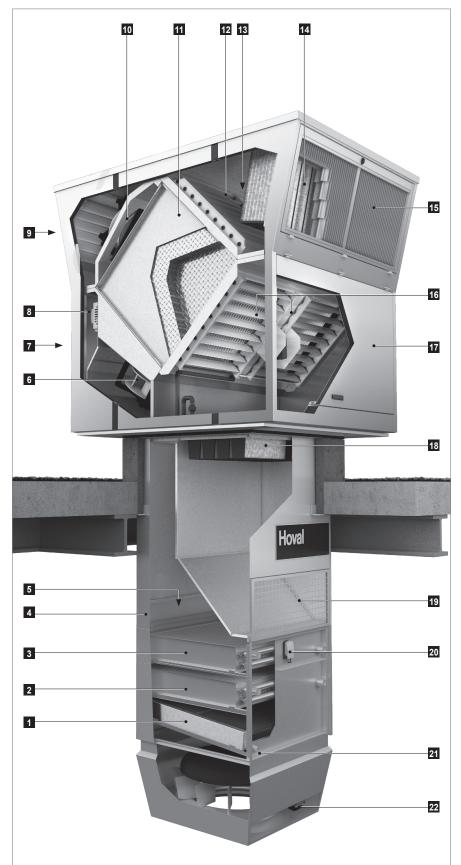
Below-roof unit

The below-roof unit comprises the following components:

- Connection module: Available in 4 lengths per unit size for adapting the unit to local installation conditions
- Heating section:
- For heating the supply air
- Cooling section:
- For cooling the supply air
- Air-Injector:

Patented, automatically adjustable vortex air distributor for draught-free air distribution over a large area


The components are bolted together and can be dismantled. The connections of the coil are located under the extract air grille as standard. The heating/cooling section can also be mounted on the connection module turned round.


Thanks to their high capability and efficient air distribution, RoofVent[®] units cover a large area. Therefore, compared to other systems, fewer units are needed to achieve the required conditions. Various units sizes and versions as well as a range of optional equipment offer great flexibility in adjustment to the specific project.

2.2 Air distribution with the Air-Injector

The patented air distributor – called the Air-Injector – is the core element. The air discharge angle is set by means of the infinitely variable guide vanes. It depends on the air flow rate, the mounting height and the temperature difference between the supply air and room air. The air is therefore blown into the room vertically downward, conically or horizontally. This ensures that:

- with each RoofVent[®] unit a large area of the hall can be reached,
- the occupied area is draught-free,
- the temperature stratification in the room is reduced, thus saving energy.

1	Condensate separator
2	Cooling coil
3	Heating coil
4	Coil access panel
5	Connection box access panel
6	Supply air fan
7	Supply air access door
8	Control block
9	Exhaust air access door
10	Exhaust air fan
11	Plate heat exchanger with bypass
	(for performance control and as
	recirculation bypass)
12	Fresh air damper with actuator
13	Bypass damper with actuator
14	Fresh air filter
15	Fresh air access door
16	Extract air and recirculation
	dampers with actuator
17	Extract air access door
18	Extract air filter
19	Extract air grille
20	Frost controller
21	Condensate connection
22	Actuator of the Air-Injector

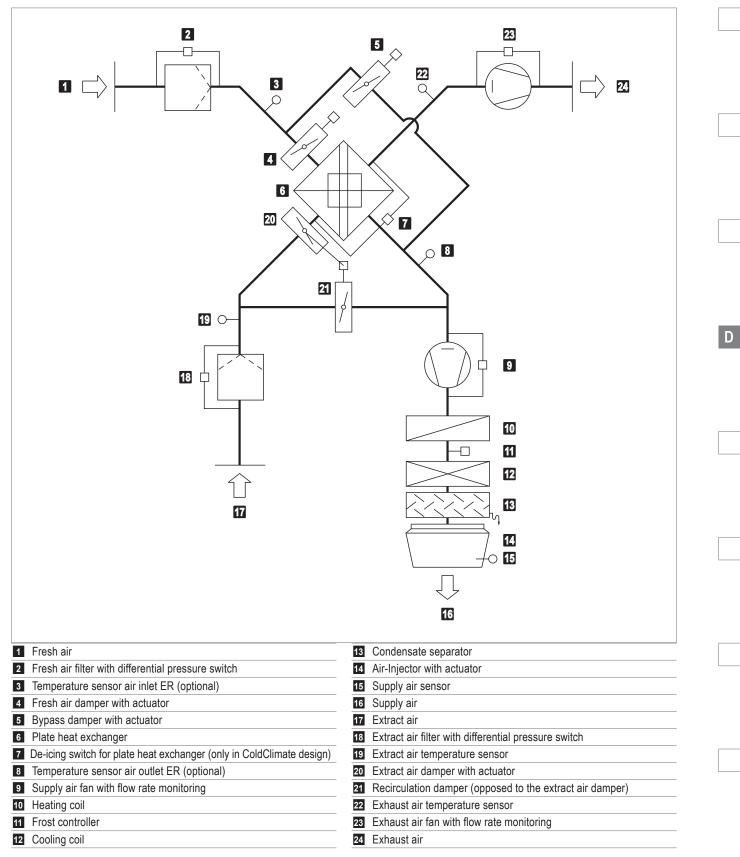


Fig. D3: Function diagram for RoofVent® KHC

2.3 Operating modes

The RoofVent® KHC has the following operating modes:

- Ventilation
- Ventilation (reduced)
- Air quality
- Recirculation
- Exhaust air
- Supply air
- Standby
- Forced heating

The TopTronic[®] C control system regulates these operating modes automatically for each control zone in accordance with the specifications in the calendar. The following points also apply:

- The operating mode of a control zone can be switched over manually.
- Each RoofVent[®] unit can operate individually in a local operating mode: Off, Recirculation, Supply air, Exhaust air, Ventilation.

Code	Operating mode	Description
VE	 Ventilation The unit blows fresh air into the room and exhausts polluted room air. The room temperature set value day is active. Depending on the temperature conditions, the system continuously controls: the energy recovery the heating/cooling 	Supply air fan on *) Exhaust air fan on *) Energy recovery 0-100 % Extract air damper open Recirculation damper closed Heating/cooling 0-100 % *) Adjustable flow rate
VEL	Ventilation (reduced) As VE, but the unit only operates with the set minimum values for the supply and exhaust air volumes	Supply air fan MIN Exhaust air fan MIN Energy recovery 0-100 % Extract air damper open Recirculation damper closed Heating/cooling 0-100 %
AQ	Air quality This is the operating mode for demand-controlled ventilation of the room. The room temperature set value day is active. Depending on the temperature conditions, the system continuously controls: the energy recovery the heating/cooling Depending on the room air quality or room air humidity, the system operates in one of the following operating states:	
AQ_REC	 Air quality Recirculation: When air quality is good and air humidity is appropriate, the unit heats or cools the room in recirculation operation. 	Like REC
AQ_ECO	 Air quality Mixed air: When ventilation requirements are medium, the unit heats or cools in mixed air operation. The supply/exhaust air volume is based on the air quality. 	Supply air fanMIN-MAX Exhaust air fanMIN-MAX Energy recovery0-100 % Extract air damper50 % Recirculation damper50 % Heating/cooling0-100 %
AQ_VE	 Air quality Ventilation: When ventilation requirements are high or the room air humidity is too high, the unit heats or cools in pure ventilation operation. 	Supply air fan MIN-MAX Exhaust air fan MIN-MAX Energy recovery 0-100 % Extract air damper open Recirculation damper closed Heating/cooling 0-100 %

Code	Operating mode	Description
REC	Recirculation On/Off recirculation operation with TempTronic algorithm: during heat or cool demand, the unit draws in room air, heats or cools it and blows it back into the room. The room temperature set value day is active. The flow rate is controlled in 2 stages.	Supply air fan 0 / Speed 1 / Speed 2 *) Exhaust air fan off Energy recovery 0 % Extract air damper closed Recirculation damper open
DES	Destratification: To avoid heat build-up under the ceiling, it may be appropriate to switch on the fan when there is no heat or cool demand (either in permanent operation or in on/off operation depending on air temperature under the ceiling, as desired).	 Heating/cooling open Heating/cooling on *) *) Depending on heat or cool demand
EA	Exhaust air The unit extracts spent room air. There is no room temperature control. Unfiltered fresh air enters the room through open windows and doors or another system provides air supply.	Supply air fan Off Exhaust air fan on *) Energy recovery 0 % Extract air damper open Recirculation damper closed Heating/cooling off *) Adjustable flow rate
SA	Supply air The unit blows fresh air into the room. The room temperature set value day is active. Depending on the temperature conditions, the system controls the heating(cooling). Spent room air passes through open windows and doors or another system provides extraction.	Supply air fan on *) Exhaust air fan off Energy recovery 0% **) Extract air damper 09% **) Extract air damper closed Heating/cooling 0-100% *) Adjustable flow rate **) Fresh air and bypass dampers are open
ST	Standby The unit is normally switched off. The following functions remain active:	
CPR	 Cooling protection: If the room temperature drops below the set value for cooling protection, the unit heats up the room in recirculation operation. 	Supply air fan MAX Exhaust air fan off Energy recovery
OPR	Overheating protection: If the room temperature rises above the set value for overheating protection, the unit cools down the room in recirculation operation. If the temperatures also permit fresh air cooling, the units automatically switches to night cooling (NCS) to save energy.	Extract air damper closed Recirculation damper open Heating/cooling on
NCS	 Night cooling: If the room temperature exceeds the set value for night cooling and the current fresh air temperature permits it, the unit blows cool fresh air into the room and extracts warmer room air. 	Supply air fan on *) Exhaust air fan on *) Energy recovery 0 % Extract air damper open Recirculation damper closed Heating/cooling off
L_OFF	Off (local operating mode) The unit is switched off. Frost protection remains active.	*) Adjustable flow rate Supply air fan off Exhaust air fan off Energy recovery 0 % Extract air damper closed Recirculation damper open Heating/cooling off
	Forced heating The unit draws in room air, warms it and blows it back into the room. For example, it is suitable for heating the hall before taking the control system into operation or if the controller fails during the heating period. Forced heating can be activated and set as required by the Hoval service technician.	Supply air fan MAX Exhaust air fan off Energy recovery 0 % Extract air damper closed Recirculation damper open Heating/cooling on

Table D1: RoofVent $^{\circledast}$ KHC operating modes

D

3 Technical data

3.1 Type code

		KH	IC -	6	В	С	
Un	it type						
Ro	ofVent [®] KHC						
Un	it size						
6 o	r 9						
Не	ating section						
А	with coil type A						
В	with coil type B						
С	with coil type C						
~							
Co	oling section						
С	with coil type C						
D	with coil type D						
Fu	rther options						

Table D2: Type code

3.2 Application limits

Fresh air temperatures		min.	°C	-30
Extract air temperature		max.	°C	40
Extract air relative humic	lity	max.	%rh	50
Moisture content of extra	act air	max.	g/kg	12.5
Units in ColdClimate des	ign:			
Fresh air temperatu	ire	min.	°C	-40
Extract air tempera	ture	max.	°C	40
Extract air relative l	numidity	max.	%rh	40
Moisture content of	extract air	max.	g/kg	4
Supply air temperature		max.	°C	60
Temperature of the heati	ng medium ¹⁾	max.	°C	90
Pressure of the heating/	cooling medium	max.	kPa	800
Air flow rate	Size 6	min.	m³/h	3100
	Size 9	min.	m³/h	5000
Condensate quantity	Size 6	max.	kg/h	90
	Size 9	max.	kg/h	150
1) Design for higher temperatur	es on request			

Table D3: Application limits

Notice

The increase of moisture content in the room is limited to a maximum of 2 g/kg.

3.3 Heat recovery system (HRS)

Unit type		KHC-6	KHC-9
Temperature efficiency, dry	%	57	57
Temperature efficiency, wet	%	61	64

Table D4: Thermal transfer level of the plate heat exchanger

3.4 Air filtration

Filter	Fresh air	Extract air
Class acc. to ISO 16890	ISO coarse 50%	ISO coarse 50%
Class acc. to EN 779	G4	G4
Factory setting of differential pressure switches	250 Pa	300 Pa

Table D5: Air filtration

3.5 Electrical connection

Unit type		KHC-6	KHC-9
Supply voltage	V AC	3 × 400	3 × 400
Permitted voltage tolerance	%	± 5	± 5
Frequency	Hz	50	50
Connected load	kW	7.18	10.98
Current consumption max.	A	12.02	18.02
Series fuse	A	13	20

Table D6: Electrical connection

3.6 Flow rate, product parameters

Unit type			KHC-6				KH	C-9		
Nominal air flow rate	m³/h	7000		10500						
	m³/s		1.94				2.9	92		
Floor area covered	m²		661				11	94		
Static efficiency of the fans	%		73.4				68	3.7		
Coil type		AC	BC	CC	AC	AC AD BC BD CC		CD		
Nominal external pressure										
Supply air	Pa	310	280	230	140	90	120	70	60	10
Extract air	Pa	390	390	390	250	250	250	250	250	250
Effective electric power input	kW	3.54	3.61	3.72	6.84	7.02	6.91	7.09	7.12	7.30

Table D7: Technical data

3.7 Heat output

Size Type A KHC-6 B C A	Q kW 42.0 60.7 99.3	Q _{TG} kW 21.4 40.1	H _{max} m 21.6	ts ℃ 27.1	∆p _W kPa	m _w I/h	Q kW	Q _{TG}	H _{max}	ts	$\Delta \mathbf{p}_{\mathbf{W}}$	m _w
КНС-6 В С	42.0 60.7	21.4		-	kPa	l/h	F/M	1-14/				
КНС-6 В С	60.7		21.6	27.1				kW	m	°C	kPa	l/h
C		40.1		21.1	10	1804	44.6	14.5	25.0	24.2	12	1918
	00.2	10.1	16.1	35.0	18	2609	64.5	34.4	17.3	32.6	21	2772
Α	99.5	78.7	11.8	51.4	23	4266	105.4	75.3	12.0	50.0	26	4530
	72.8	41.8	20.3	29.8	11	3125	77.3	32.1	23.0	27.1	13	3321
KHC-9 B	93.7	62.8	16.7	35.8	18	4027	99.6	54.4	17.9	33.4	20	4280
С	157.1	126.2	12.1	53.7	26	6750	166.9	121.7	12.3	52.4	29	7171
Q = Cc	Type Type of coil ts = Supply air temperature Q = Coil heat output Δp_W = Water pressure drop											
H _{max} = Ma	aximum mounting	height										
Reference: Heating med	dium: 80/60 °C											
Room air:	18 °C											
Extract air:	20 °C / 20	% rel. humidit	ty									

Table D8: Heat output

9

Notice

The output for coverage of the fabric heat losses (Q_{TG}) allows for the ventilation heat requirement (Q_V) and the energy recovery output (Q_{ER}) under the respective air conditions.

The following applies:

 $Q + Q_{ER} = Q_V + Q_{TG}$

3.8 Cooling capacities

0:	Turna	Q _{sen}	Q _{tot}	Q _{TG}	ts	$\Delta \mathbf{p}_{\mathbf{W}}$	mw	m _c	Q _{sen}	Q _{tot}	Q _{TG}	ts	$\Delta \mathbf{p}_{\mathbf{W}}$	mw	m _c	
Size	Туре	kW	kW	kW	°C	kPa	l/h	kg/h	kW	kW	kW	°C	kPa	l/h	kg/h	
Fresh air	conditions	s 28 °C / 40 %							28 °C / 60 %							
KHC-6	С	24.0	26.2	15.2	15.5	22	3750	3.2	21.4	40.6	12.6	16.6	52	5809	28.2	
	С	37.8	41.3	24.7	15.0	24	5919	5.1	33.8	62.8	20.6	16.2	55	8998	42.7	
KHC-9	D	45.5	52.7	32.3	12.9	23	7554	10.7	41.7	81.1	28.6	13.9	54	11618	57.9	
Fresh air	conditions			32	°C / 40 9	6					32	°C / 60 %	6			
KHC-6	С	29.2	42.1	20.4	17.3	56	6022	18.9	26.6	56.4	17.9	18.4	101	8073	43.7	
1/110.0	С	46.0	66.3	32.8	16.7	61	9493	29.8	42.0	87.7	28.8	17.8	107	12560	67.2	
KHC-9	D	56.2	84.3	43.1	13.8	58	12065	41.2	52.5	112.5	39.3	14.9	104	16113	88.3	
Legend:							ater pressu ater quantil	ire drop ty								
Reference:	Cooling mediur At fresh air ter Room air: 22 Extract air: 24	nperature 2 °C			At fresh air Room air: Extract air:	26 °C		idity								

Table D9: Cooling capacity

Notice

The output for coverage of the fabric heat losses (Q_{TG}) allows for the ventilation heat requirement (Q_V) and the energy recovery output (Q_{ER}) under the respective air conditions. The following applies:

 $Q + Q_{ER} = Q_V + Q_{TG}$

D

3.9 Sound data

Operatin	ig mode		VE						
ltem		1	2	3	4				
	Sound pressure level (at a dista	nce of 5 m) ¹⁾	dB(A)	52	65	59	52		
	Total sound power level	dB(A)	74	87	81	74			
		63 Hz	dB	44	48	44	45		
		125 Hz	dB	52	59	55	53		
KHC-6		250 Hz	dB	70	76	72	69		
KHC-0		500 Hz	dB	69	79	74	69		
	Octave sound power level	1000 Hz	dB	65	83	78	65		
		2000 Hz	dB	64	80	73	64		
		4000 Hz	dB	59	75	67	59		
		8000 Hz	dB	65	78	70	65		
	Sound pressure level (at a dista	nce of 5 m) ¹⁾	dB(A)	58	72	67	58		
	Total sound power level		dB(A)	80	94	89	80		
		63 Hz	dB	52	56	52	52		
		125 Hz	dB	59	67	63	60		
KHC-9		250 Hz	dB	75	83	79	75		
КПС-9	Ostava agund newer level	500 Hz	dB	76	87	82	76		
	Octave sound power level	1000 Hz	dB	73	90	85	73		
		2000 Hz	dB	70	89	82	69		
		4000 Hz	dB	63	82	75	63		
		8000 Hz	dB	64	81	73	66		
1) with her	nispherical radiation in a low-reflection envi	ronment							
		 Fresh a Exhaus Supply Extract 	st air air						

Table D10: Sound data

3.10 Dimensions and weights

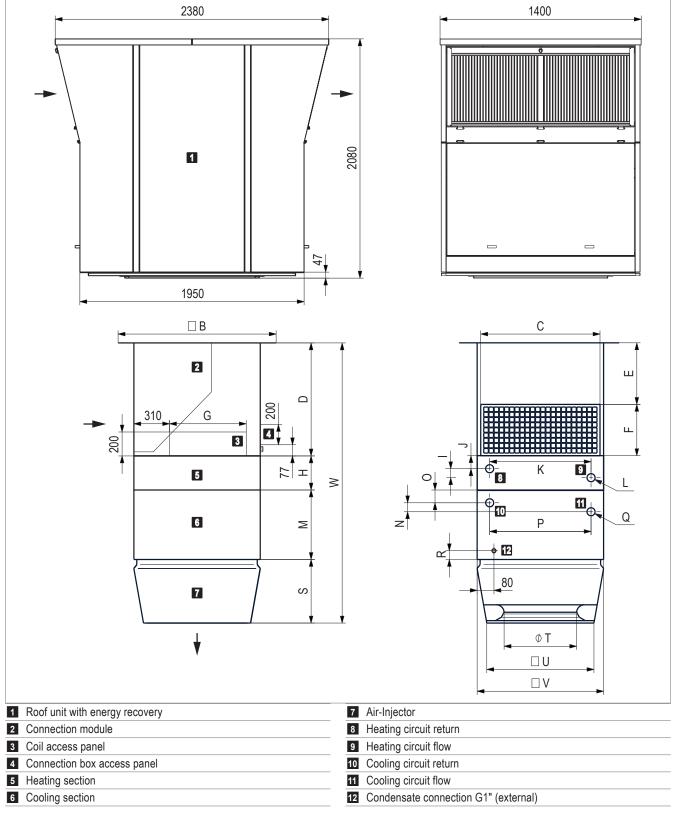


Fig. D4: Dimensional drawing (dimensions in mm)

Unit type			KHC-	6		KHC-9						
A	mm		1400)		1750						
В	mm		1040)			1240)				
С	mm		848	3			1048	3				
F	mm		410)			450)				
G	mm		470)			670)				
Н	mm		270)		300						
М	mm		620)		610						
S	mm		490)		570						
Т	mm		500)		630						
U	mm		767	7		937						
V	mm		900)			1100)				
Connection module		V0	V1	V2	V3	V0	V1	V2	V3			
D	mm	940	1190	1440	1940	980	1230	1480	1980			
E	mm	530	780	1030	1530	530	780	1030	1530			
W	mm	2320	2570	2820	3320	2460	2710	2960	3460			

Table D11: Unit dimensions

Unit type				KHC-6	KHC-					
Heating coil type		A	В	C	A	В	C			
	mm	78	78	78	78	78	78			
J	mm	101	101	101	111	111	111			
К	mm	758	758	758	882	882	882			
L (internal thread)	"	Rp 1¼	Rp 1¼	Rp 1¼	Rp 1½	Rp 1½	Rp 1½			
Water content of the coil	I	4.6	4.6	7.9	7.4	7.4	12.4			

Fig. D5: Dimensions for hydraulic connection of the heating section

Unit type		KHC-6		KHC-9
Cooling coil type		C	C	D
Ν	mm	78	78	95
0	mm	123	92	83
Р	mm	758	882	882
Q (internal thread)	"	Rp 1¼	Rp 1½	Rp 2
R	mm	54	53	53
Water content of the coil	I	7.9	12.4	19.2

Fig. D6: Dimensions for hydraulic connection of the cooling section

Unit type	КНС	6-AC	6-BC	6-CC	9-AC	9-AD	9-BC	9-BD	9-CC	9-CD		
Total	kg	779	779	786	997	1016	997	1016	1007	1026		
Roof unit	kg	567	567	567	701	701	701	701	701	701		
Below-roof unit	kg	212	212	219	296	315	296	315	306	325		
Air-Injector	kg	37	37	37	56	56	56	56	56	56		
Heating section	kg	30	30	37	44	44	44	44	54	54		
Cooling section	kg	70	70	70	102	121	102	121	102	121		
Connection module V0	kg		75		94							
Additional weight V1	kg		+ 11		+ 13							
Additional weight V2	kg		+ 22				+ 2	26				
Additional weight V3	kg		+ 44				+ {	52				

Table D12: Weights of the RoofVent® KHC

D

4 Specification texts

RoofVent® KHC

Supply and extract air handling unit with energy recovery for heating and cooling high spaces in the 4-pipe system. The unit consists of the following components:

- Roof unit with energy recovery
- Below-roof unit:
 - Connection module
 - Heating section
 - Cooling section
 - Air-Injector
- Control components
- Optional components

Roof unit with energy recovery

Self-supporting housing, made of aluminium (outside) and aluzinc sheet and aluminium (inside):

- Weatherproof, corrosion resistant, impact resistant, air-tight
- Low flammability, double-shelled, without heat bridges, with highly efficient insulation made of expanded polystyrene
- Hygienic and easy to maintain because of smooth interior surfaces and large access doors with ageing-resistant, silicone-free sealing materials

The roof unit with energy recovery includes:

Supply air and exhaust air fans:

Designed as maintenance-free, direct-drive radial fans with high-efficiency EC motor, backwards-curved, 3D contoured blades and a free-running rotating wheel made of a high-performance composite material; inflow nozzle with optimised flow; infinitely variable speed; with active pressure registration for constant volumetric flow control and/or demand-controlled volumetric flow adjustment; low-noise; with integrated overload protection.

Fresh air filter:

Designed as highly efficient bag filter elements, class ISO coarse 50 % (G4), fully incinerable, easy to change, including differential pressure switch for filter monitoring.

Extract air filter:

Designed as highly efficient bag filter elements, class ISO coarse 50 % (G4), fully incinerable, easy to change, including differential pressure switch for filter monitoring.

Plate heat exchanger:

Cross-flow plate heat exchanger made of high-quality aluminium as a highly efficient, recuperative heat recovery system, certified by Eurovent, zero-maintenance, without moving parts, failsafe, hygienically harmless, no cross-contamination of impurities and odours. Equipped with bypass, recirculation bypass, condensate drain and condensation trap to the roof. The following dampers are arranged on the exchanger package:

- Fresh air and bypass dampers, each with their own actuator, for infinitely variable control of the heat recovery; with shut-off function by spring return.
- Extract air and recirculation dampers, interlinked in a counter-rotating arrangement with a common actuator, for controlling the recirculation and mixed air operation; with shut-off function by spring return.

All dampers correspond to seal integrity class 2 according to EN 1751.

Access openings:

- Fresh air access door: large access opening with integrated weather and bird protection, configured with quick locking system for easy access to the fresh air filter, the plate heat exchanger as well as the fresh air and bypass dampers.
- Exhaust air access door: large, lockable access opening with integrated weather and bird protection for easy access to the exhaust air filter.
- Extract air access door: large access opening, configured with quick locking system and telescopic support for easy access to the extract air filter, the plate heat exchanger, the condensation trap as well as the extract air and recirculation dampers.
- Supply air access door: large, lockable access opening, configured with telescopic support for easy access to the supply air fan, the control block and the condensate collecting channel.

Control block:

Compact design on an easily accessible mounting plate, comprising:

- Unit controller as part of the TopTronic[®] C control system:
 - Fully wired to the electrical components of the roof unit (fans, actuators, temperature sensors, filter monitoring, differential pressure sensor)
 - Pluggable wiring to the control box in the connection module
- High-voltage section:
 - Mains power terminals
 - Isolation switch
 - Button for stopping the fans during filter change
- Low-voltage section:
 - Transformer for actuators, sensors and the unit controller
 - Externally switchable forced heating
 - Externally switchable forced off
- Circuit board with further electronic components for unit control (differential pressure measurement, fuses for the transformer, fuses for low voltage, ...)

Connection module

Housing made of aluzinc sheet, air-tight, flame retardant, hygienic and easy to maintain because of smooth interior surfaces and ageing-resistant, silicone-free sealing materials; configured with extract air grille and access panel for easy access to the coil for maintenance. The connection module contains:

- Laced wiring harness protected in a sheet metal duct, with direct plug connection to the control block in the roof unit
- Connection box made of galvanised sheet steel, configured with circuit board, screw-on cover and cable lead-ins with splash water protection and strain relief; for connection of:
 - Power supply
 - Zone bus
 - All sensors and actuators of the below-roof unit (readyto-connect): frost controller, supply air temperature sensor, Air-Injector actuator
 - Peripheral components (e.g. mixing valves, pumps, ...)
 - Optional components as required

Connection module V1 / V2 / V3:

The connection module is extended for adapting to the local installation situation.

Heating section

Housing made of aluzinc sheet, air-tight, flame retardant, hygienic and easy to maintain because of ageing-resistant, silicone-free sealing materials. The heating section contains:

- The highly efficient heating coil consisting of seamless copper pipes with pressed-on, optimised and profiled aluminium fins and manifolds made of copper; for connection to the hot water supply
- Frost controller

Cooling section

Housing made of aluzinc sheet, air-tight, flame retardant, hygienic and easy to maintain because of ageing-resistant, silicone-free sealing materials, internally insulated with closepored polyurethane. The heating/cooling section contains:

- The highly efficient heating/cooling coil consisting of seamless copper pipes with pressed-on, optimised and profiled aluminium fins and manifolds made of copper; for connection to the hot water and cold water supply
- The pull-out condensate separator with collecting channel, made of high-quality corrosion-resistant material, with a downslope in all directions for rapid draining
- The condensate trap for connecting to a condensate drain (supplied).

Air-Injector

1 Air-Injector:

Housing made of aluzinc sheet, air-tight, flame retardant, hygienic and easy to maintain because of ageing-resistant, silicone-free sealing materials, internally insulated with closepored polyethylene, with:

- Vortex air distributor with concentric outlet nozzle, adjustable vanes and integrated absorber hood
- Actuator for infinitely variable adjustment of the air distribution from vertical to horizontal for draught-free air distribution in the hall under changing operating conditions
- Supply air temperature sensor

2 Air-Injectors:

2x Air-Injectors, supplied loose; supply air duct for connecting the RoofVent[®] unit to the Air-Injectors on site.

Housing made of aluzinc sheet, air-tight, flame retardant, hygienic and easy to maintain because of ageing-resistant, silicone-free sealing materials, internally insulated with closepored polyethylene, with:

- Vortex air distributor with concentric outlet nozzle, adjustable vanes and integrated absorber hood
- Actuator for infinitely variable adjustment of the air distribution from vertical to horizontal for draught-free air distribution in the hall under changing operating conditions
 - Supply air sensor (supplied in the connection module)

Without Air-Injector:

Unit configured without vortex air distributor for connection to an on-site supply air duct and air distribution within the building, supply air temperature sensor supplied in the connection module.

Options for the unit

ColdClimate design:

Units in ColdClimate design are suitable for temperatures down to -40 °C. The following features ensure trouble-free operation of the system:

- Actuators and gear wheels of the fresh air and bypass dampers are provided with a heating facility.
- To protect the plate heat exchanger against freezing, a special de-icing switch overrides the automatic unit control when necessary.
- The water temperature on the coil is also monitored by the frost controller.
- The return temperature of the heating medium is monitored by the return temperature sensor.
- Condensate from the plate heat exchanger is led to a condensate drain connection in the below-roof unit.

Paint finish of below-roof unit:

Choice of external paint finish in RAL colour

D

53

Fresh air and exhaust air silencers:

Fresh air silencer configured as add-on part for the roof unit which can be folded downwards, housing made of aluminium with a bird screen and acoustic insulation lining, for reducing sound emissions on the fresh air side; exhaust air silencer configured as add-on part for the roof unit which can be folded downwards, housing made of aluminium with bird screen and easily accessible sound attenuation splitters, optimised flow, with abrasion-resistant and easily cleaned surfaces, non-flammable, hygienically clean with high-quality glass filament cover for reducing sound emissions on the exhaust air side, insertion loss fresh air/exhaust air _____ dB / _____ dB

Supply air and extract air silencers:

Supply air silencer configured as separated component in the below-roof unit, flow-optimised sound attenuation splitters, with abrasion-resistant and easily cleaned surfaces, non-flammable, hygienically clean with high-quality glass filament cover, extract air silencer configured as acoustic insulation lining in the connection module, for reducing sound emission in the room, insertion loss supply air/extract air _____ dB / _____ dB

Mixing valve:

Mixing valve with modulating rotary actuator, sized for the coil in the unit.

Condensate pump:

Consisting of a centrifugal pump and a drip tray, max. delivery rate of 150 l/h with a delivery head of 3 m.

Socket:

230 V socket installed in the control block for simple supply of external, electrical units.

Energy monitoring:

Consisting of 2 additional temperature sensors for recording the air inlet and air outlet temperatures of the plate heat exchanger. Energy monitoring makes it possible to display the energy saved by heat and cool recovery.

Pump control for mixing or injection system:

Electrical components for controlling a mixing or injection circuit in the load circuit.

Return temperature sensor:

Temperature sensor for monitoring the heating medium. If necessary, it triggers frost pre-control at the heating valve to prevent the system possibly being shut down due to frost.

TopTronic[®] C control systems

Zone-based control system ex-works for operation of decentralised Hoval indoor climate systems with optimised use of energy, suitable for demand-driven control of overall systems comprising up to 64 control zones each with up to 15 supply and extract air handling units or supply air units and 10 recirculation units.

The control system is customised and preconfigured ex works. Zone allocation:

Zone 1:	x Unit type	
Zone 2:	x Unit type	
Zone 3:	x Unit type	

System structure:

- Unit controller: installed in the particular indoor climate unit
- Zone bus: as serial connection of all unit controllers in one control zone with the zone controller; with robust bus protocol via shielded and twisted-pair bus line (bus cables provided by the client)
- Zone control panel with:
 - System operator terminal
 - Fresh air temperature sensor
 - Zone controllers and room air temperature sensors
 - All components for the electrical power supply and protection
- System bus (Ethernet): for connecting all zone controllers to one another and to the system operator terminal (bus cables provided by the client)

Operation:

- TopTronic[®] C-ST as system operator terminal: touch panel for visualisation and control by web browser via HTML interface, including software for LAN access
- TopTronic[®] C-ZT as zone operator terminal: for simple on-site operation of a control zone (optional)
- Manual operating selector switch (optional)
- Manual operating selector button (optional)
- Operating of the units via building management system via standardised interfaces (optional):
 - BACnet
 - Modbus IP
 - Modbus RTU

Control functions:

- Control of the supply air temperature using room supply air cascade control via sequential control of the energy recovery and the coils (depending on the unit type)
- Demand-driven control of the room air quality by variation of the supply air and exhaust air volume flows with minimum and maximum limit (for supply and extract air handling units, optional)
- Control of the unit including the air distribution according to the specifications of the zone controller

D

Alarms, protection:

- Central alarm management with registration of all alarms (timestamp, priority, status) in an alarm list and alarm memory of the last 50 alarms; forwarding via e-mail can be set in the parameters.
- If there is a failure of communication, bus stations, sensor systems or supply media, each part of the system transitions to a protection mode which safeguards operation.
- Frost protection control of the units with constrained control of protection functions to prevent coil icing (for supply air units as well as supply and extract air handling units)
- A maintenance mode implemented in the control algorithm for testing all physical data points and alarms guarantees high reliability.

Options for the zone control panel:

- Design for heating (KH, KC, KHC)
- Design for cooling (KC, KHC)
- Cooling lock switch (KC, KHC)
- Heating/cooling switch (KC, KHC)
- Alarm lamp
- Socket
- Additional room air temperature sensors (max. 3)
- Combination sensor room air quality, temperature and humidity (protection rating IP20 or IP65)
- Combination sensor fresh air temperature and humidity (protection rating IP65)
- External sensor values
- External set values
- Load shedding input
- Operating selector switch on terminal
- Operating selector button on terminal
- Power supply for air handling unit
- Safety relay
- Control of distributor pump(s), incl. power supply (KH, KC, KHC)

Options

1	Type code	58
2	ColdClimate design	60
3	Connection module	60
4	Design with 2 Air-Injectors	61
5	Design without Air-Injector	61
6	Paint finish of below-roof unit	61
7	Fresh air and exhaust air silencers	62
8	Supply air and extract air silencers	63
9	Mixing valve	63
10) Condensate pump	64
11	Socket	64
12	2 Energy monitoring	64
13	B Return temperature sensor	64
14	Pump control for mixing or injection system	64

Ε

1 Type code

		KH - 9	B	с -	K1 /	ST .	/ \	/0 . D	1 . L	U/AF.	ç	51 / M
Unit t												
KH	Unit with heating section											
KC	Unit with heating/cooling section											
KHC	Unit with heating and cooling section											
Unit s	ize											
6	Size 6											
9	Size 9											
Heati	ng section											
-	without heating section											
А	with coil type A											
В	with coil type B											
С	with coil type C											
Heati	ng/cooling section											
-	without heating/cooling section											
С	with coil type C											
D	with coil type D											
Heat	recovery											
K1	Temperature efficiency 57 %											
A)												
Desig	n											
ST	Standard					_						
CC	ColdClimate design											
Reser	ve											
Conn	ection module											
V0	Standard							_				
V1	Length +250 mm											
	Length + 500 mm											
V3	Length + 1000 mm											
Air ou	itlet											
D1	Design with 1 Air-Injector								1			
D2	Design with 2 Air-Injectors											
D0	Design without Air-Injector											
Paint	finish											
-	without											

LU Paint finish of below-roof unit

		KH - 9 B C - K1 / ST / V0 . D	4 III/AE	SI /	ç	en / T	с Е	MD	ыг
		MI - 9 D C - KI/SI / W. D	1. LU / AF .	. 31 /		ייטנ	U.E	IVI . F	п. г
Silen	cers outside								
-	without								
AF	Fresh air and exhaust air silencer								
Silen	cers inside								
-	without								
SI	Supply air and extract air silencer								
Hydra	ulics								
-	without								
Μ	Mixing valve								
Cond	lensate pump								
-	without								
KP	Condensate pump								
Rese	rve								
Sock	-1								
SOUN	without				 				
SD	Socket in the unit								
Cant									
TC TC	rol system TopTronic [®] C				 				
10	Top Home" C								
Energ	gy monitoring								
-	without								
EM	Energy monitoring								
Pum	o control				 				
-	without								
PH	Heating pump								
ΡK	Heating or cooling pump								
PP	Heating pump and cooling pump								
Retu	m temperature sensor				 				
-	without								
RF	Return temperature sensor								

Table E1: Type code

2 ColdClimate design

RoofVent® units in ColdClimate design are suitable for use in regions where outside temperatures fall below -30 °C. The minimum outside temperature allowed is -40 °C. The following features ensure trouble-free operation of the system:

Plate heat exchanger

- To protect the plate heat exchanger against freezing, a differential pressure sensor is installed for monitoring its pressure drop. When the pressure difference becomes too high due to ice formation a special de-icing switch overrides the automatic unit control:
 - The alarm 'De-icing energy recovery' is shown.
 - The unit runs in local 'Exhaust air' mode unit the ice has defrosted and then switches back to automatic mode.
- Condensate from the plate heat exchanger is not drained onto the roof but through a hose inside the connection module
 - Install an condensate drain with trap in accordance with the local provisions.

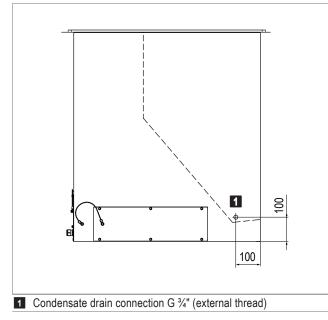


Fig. E1: Dimensional drawing for condensate drain connection (in mm)

Fresh air and bypass dampers

Actuators and gear wheels of the fresh air and bypass dampers are provided with a heating facility.

Frost control

In addition to the air temperature, the water temperature in the heating/cooling coil is also monitored by the frost controller. For this, the capillary end of the frost controller is inserted in an immersion sleeve in the return manifold of the heating coil.

- If the water temperature falls below 11 °C, the mixing valve steadily opens.
- On reaching a water temperature of 5 °C or lower the mixing valve is fully open, the unit switches off and a frost alarm is activated.

Notice

Always use a return temperature sensor for units in ColdClimate design. It triggers frost pre-control at the heating valve to prevent the system possibly being shut down due to frost.

Requirements for on-site installations

Hydraulic circuit:

A mixing system must be installed in the load circuit. (For mixing valve and pump specifications please refer to section 14.)

Electrical installation:

At low outside temperatures, a cold start of the fans can cause damage to the unit. Therefore:

- A continuous power supply for the fans must be ensured so that they do not cool down too much.
- After a power failure, there is a waiting period of 20 minutes before the fans start up again.

Notice

Always use a combination sensor QF65 for measuring the outdoor temperature. It is suitable for temperatures down to -40 °C.

Notice

Always use the option 'Socket in the unit' for units in ColdClimate design.

3 Connection module

The connection module is available in 4 lengths for adapting the RoofVent[®] unit to local conditions.

4 Design with 2 Air-Injectors

A supply air duct can be connected to the RoofVent[®] unit for distributing the supply air over a very wide area. 2 Air-Injectors can be installed on this. The supply air duct and the cabling must be provided by the client.

Notice

An actuator is installed in each of the 2 Air-Injectors. The supply air temperature sensor is enclosed in the connection module for on-site installation in the supply air duct.

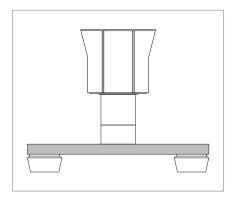


Fig. E2: RoofVent® unit with supply air duct and 2 Air-Injectors

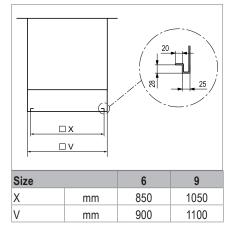


Fig. E3: Connection dimensions for supply air duct (in mm)

5 Design without Air-Injector

RoofVent[®] units in the design without Air-Injector are suitable for connecting to an air distribution system supplied by the client.

Notice

The supply air temperature sensor is enclosed in the connection module for on-site installation in the supply air duct.

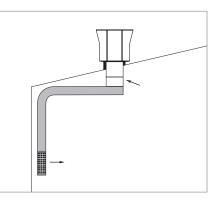


Fig. E4: Connection to an air distribution system supplied by the client

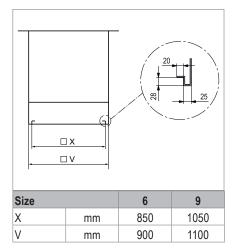
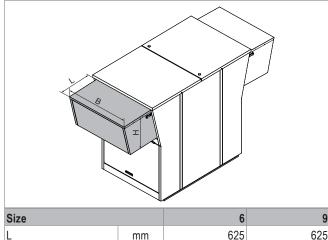


Fig. E5: Connection dimensions for supply air duct (in mm)


6 Paint finish of below-roof unit

The entire below-roof unit is painted in any colour. If the below-roof unit is equipped with a supply air silencer, this is also painted.

61

7 Fresh air and exhaust air silencers

The fresh air silencer reduces noise emissions from RoofVent® units on the fresh air side. It consists of an aluminium casing with a bird screen and acoustic insulation lining and is configured as an add-on part for the roof unit which can be folded downwards.

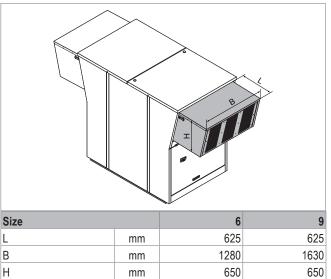

L	mm	625	625
В	mm	1280	1630
Н	mm	650	650
Weight	kg	30	42
Pressure drop	Pa	19	20

Table E2: Technical data of the fresh air silencer

Frequency	Size 6	Size 9
63 Hz	0	0
125 Hz	1	1
250 Hz	3	3
500 Hz	4	4
1000 Hz	4	4
2000 Hz	4	4
4000 Hz	3	3
8000 Hz	3	3
Sum	3	3

Table E3: Insertion attenuation of the fresh air silencer (values in dB, relating to the nominal air flow rate)

The exhaust air silencer reduces noise emissions from RoofVent® units on the exhaust air side. It consists of an aluminium casing with a bird screen and sound attenuation splitters and is configured as an add-on part for the roof unit which can be folded downwards.

Н	mm	650	650
Weight	kg	52	68
Pressure drop	Pa	93	100

Table E4: Technical data of the exhaust air silencer

Frequency	Size 6	Size 9
63 Hz	2	2
125 Hz	3	3
250 Hz	9	9
500 Hz	11	11
1000 Hz	15	15
2000 Hz	14	14
4000 Hz	10	10
8000 Hz	8	8
Sum	11	11

Table E5: Insertion attenuation of the exhaust air silencer (values in dB, relating to the nominal air flow rate)

Notice

Fresh air and exhaust air silencers are not available for units in ColdClimate design.

Options

8 Supply air and extract air silencers

Supply air and extract air silencers reduce the noise from RoofVent[®] units within the room. The supply air silencer is designed as a separated component and is installed above the Air-Injector. The extract air silencer consists of acoustic insulation lining in the connection module.

Notice

Due to space requirements of the extract air silencer an extended connection module is required (option V1, V2 or V3).

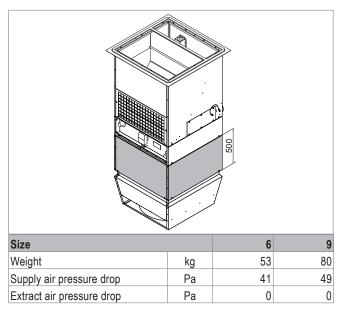
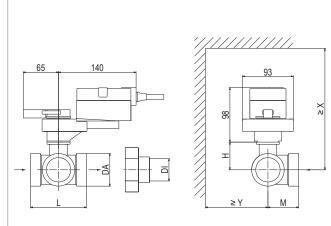


Table E6: Technical data of the supply air and extract air silencers

		Supply air	Extract air		
Frequency	Size 6	Size 9	Size 6	Size 9	
63 Hz	7	5	0	0	
125 Hz	9	7	0	0	
250 Hz	15	15	2	2	
500 Hz	17	17	3	3	
1000 Hz	19	20	3	3	
2000 Hz	15	17	3	3	
4000 Hz	13	12	2	2	
8000 Hz	10	9	2	2	
Sum	15	15	2	2	

Table E7: Insertion attenuation of the supply and extract air silencers (values in dB, relating to the nominal air flow rate)


Notice

Supply air and extract air silencers are not available for units in ColdClimate design.

9 Mixing valve

Mixing valves which are optimally matched to the units are available for easy installation of RoofVent[®] units. They have the following specifications:

- 3-way mixing valve with modulating rotary actuator (run time 90 s)
- Flow characteristic:
 - Equal percentage control path
 - Linear bypass
- Integrated position control and response

Туре	DN	kvs	DA	DI	L	Н	М	Х	Y
		m³/h	"	"	mm	mm	mm	mm	mm
M-6AB	20	6.3	G 1¼	Rp ¾	86	46	42	220	90
M-6C	25	10	G 1½	Rp 1	85	46	45	220	90
M-9AB	25	10	G 1½	Rp 1	85	46	45	220	90
M-9C	32	10	G 2	Rp 1¼	104	46	56	220	90
M-9D	40	16	G 2¼	Rp 11/2	115	51	56	230	90

Table E8: Dimensions of mixing valves

Туре	Weight
	kg
M-6AB	2.6
M-6C	3.1
M-9AB	3.1
M-9C	4.0
M-9D	4.7

Table E9: Weights of the mixing valves

10 Condensate pump

RoofVent[®] cooling units must be connected to a condensate drainage system. For applications in which connection to the waste water system is too expensive or not possible for structural reasons, a condensate pump can be provided. This is installed directly under the condensate drain connection; the supplied container is prepared for installation on the Air-Injector. It pumps the condensate through a flexible hose to a delivery head of 3 m, thus enabling discharge of the condensate

- through waste water pipes directly below the ceiling,
- onto the roof.

Flow rate (at 3 m delivery head)	l/h	max. 150
Tank capacity	I	max. 1.9
Dimensions (L x W x H)	mm	288 x 127 x 178
Weight	kg	2.4

Table E10: Technical data of the condensate pump

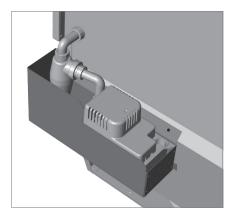


Fig. E6: Condensate pump

11 Socket

For maintenance work, a socket (1-phase, 230 V AC, 50 Hz) can be installed in the roof unit, next to the control block.

12 Energy monitoring

Energy monitoring makes it possible to display the energy saved by heat and cool recovery. For this purpose, 2 additional temperature sensors are installed in the RoofVent[®] units; they record the air inlet and air outlet temperatures of the plate heat exchanger.

13 Return temperature sensor

The return temperature sensor monitors the return temperature of the heating medium. If necessary, it triggers frost pre-control at the heating valve to prevent the system possibly being shut down due to frost.

14 Pump control for mixing or injection system

Instead of the diverting system, a mixing or injection circuit can also be installed in the load circuit.

Please note the following:

- Not only the mixing valves but also the pumps in the load circuit are controlled directly by the control block.
- Terminals for wiring the mixing valves and the pumps in the load circuit are located in the connection box.
- Make sure that valves and pumps which meet the following requirements are provided on site.

Requirements for mixing valves

- Use 3-way mixing valves with the following flow characteristics:
 - Equal percentage control path
 - Linear bypass
- The valve authority must be ≥ 0.5 .
- The maximum run time of the valve actuator is 90 s.
- The valve actuator must be continuous, i.e. the stroke changes in proportion to the control voltage (0...10 VDC or 2...10 VDC).
- The valve actuator must be designed with a position response (0...10 VDC or 2...10 VDC).
- The maximum power consumption is 20 VA.
- Install the valve close to the unit (max. distance 2 m).

Requirements for changeover valves

Use changeover valves conforming to the following specification:

- 3-way changeover valves
- Supply voltage 24 V AC
- 1-wire control (0/24 V AC)
- Position response via limit switches (0°/90°)
- Power consumption max. 44 VA

Requirements for pumps

Voltage	_230 V AC
Current	_up to 4.0 A

Options

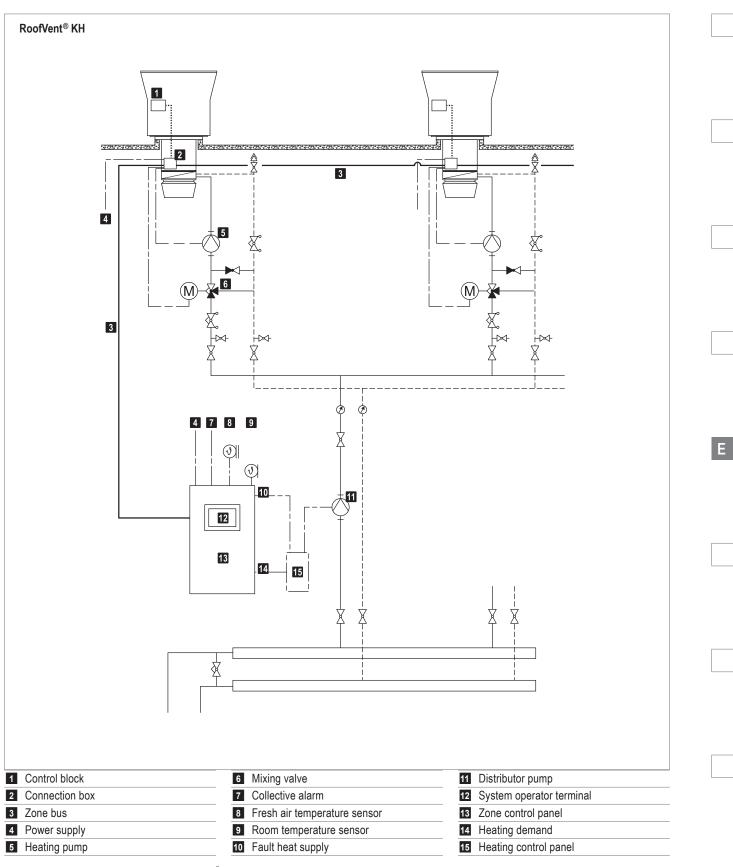


Fig. E7: Schematic diagram for mixing system RoofVent® KH

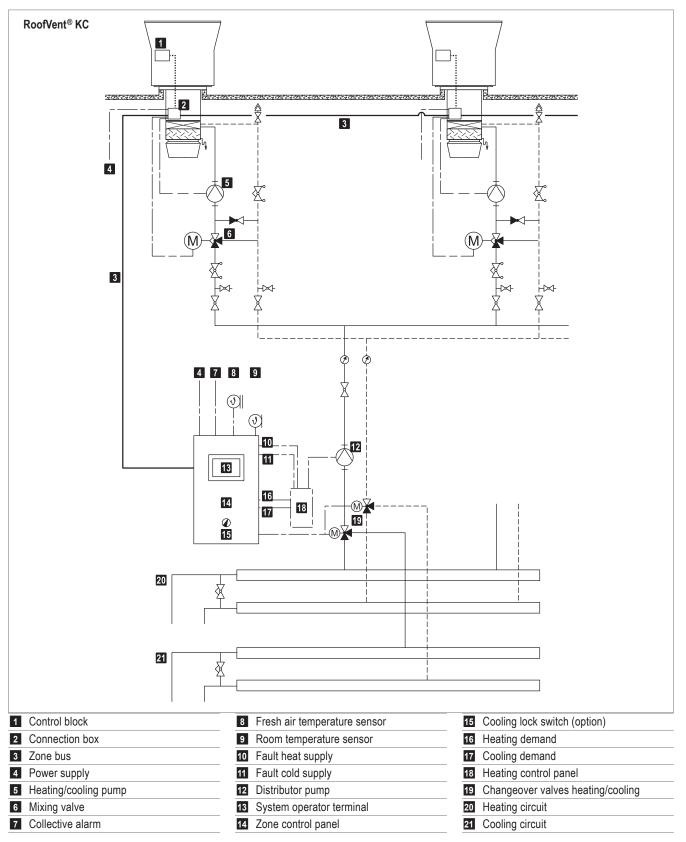


Fig. E8: Schematic diagram for mixing system RoofVent® KC

Options

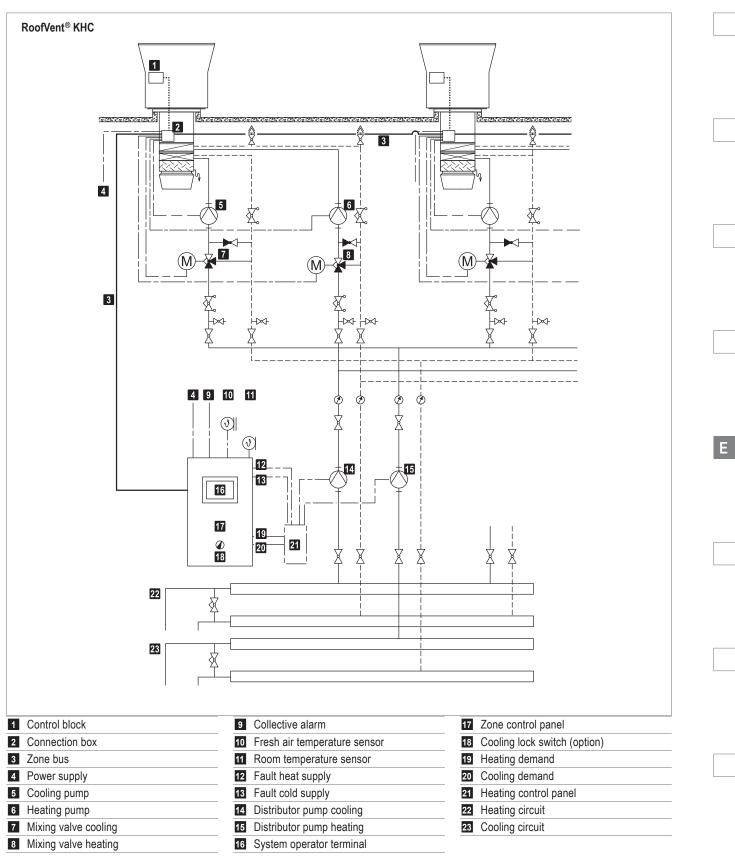


Fig. E9: Schematic diagram for mixing system RoofVent® KHC

Transport and installation

Transport and Installation

1	Installation	0
2	Hydraulic installation	4
3	Electrical installation	8

F

1 Installation

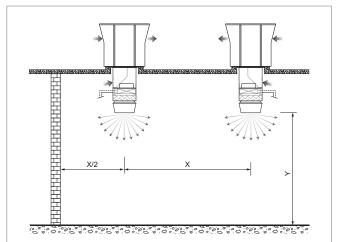
1.1 Preparation

The following guidelines are important when preparing for installation:

- The scope of delivery includes:
 - Roofvent[®] unit, delivered in 2 parts on pallets (roof unit, below-roof unit)
 - Accessories (installation material, filters)
 - Optional components
- The units are installed in or on the roof. A crane or helicopter is required.
- Transport eyes are supplied for lifting the below-roof unit and the roof unit.
 - Use lifting ropes at least 2 m in length to lift the below-roof unit.
 - Use lifting ropes at least 3 m in length to lift the roof unit.
- Depending on the unit size, the below-roof unit can be delivered in 2 parts.
- Make sure that the roof frame corresponds to the specifications in section 1.3.
- A sealing compound is required for sealing (e.g. PU foam).
- Define the desired orientation of the units (position of the refrigerant connections).

Note

The standard position of the refrigerant connections is underneath the extract air grille. Check the local installation conditions. If another orientation is required, the heating or cooling section can be mounted turned round on the connection module.


- Fresh air and exhaust air silencers are supplied separately. Install them on the unit before transporting it to the roof, and make sure they are locked.
- Follow the installation instructions included.

Notice

Provide suitable protective devices and make sure the units can be accessed easily. The maximum roof load of the RoofVent[®] units is 80 kg.

1.2 Positioning

- Comply with the minimum and maximum distances.
- Pay attention to the alignment of the units relative to each other. Units must not draw in exhaust air from other units as fresh air.
- All air inlet and air outlet openings must be freely accessible. The supply air jet must be free to spread out unhindered.
- The access doors in the roof unit and the access panels in the below-roof unit must be easily accessible.
- Clearance of at least 0.9 m is required for maintenance work around the heating/cooling section.

Unit type				KH-9	KC-6	KC-9 KHC-9	
Distance X	min.	m	14	18	12	17	
	max.	m	27	36	25	35	
Mounting height Y	min.	m	4	5	4	Ę	
	max. 1)	m		Approx. 925			

 The maximum mounting height varies depending on the boundary conditions (for values, see table of heat outputs or calculation with the 'HK-Select' selection program).

Table F1: Minimum and maximum distances

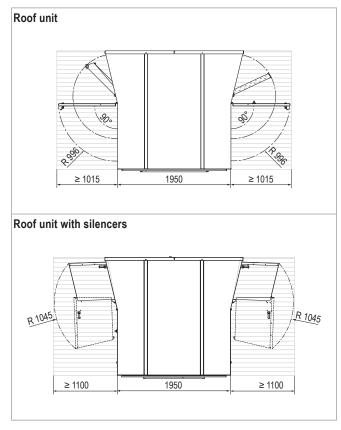


Fig. F1: Space requirements for maintenance on the roof (dimensions in mm)

Notice

Ť

If side access is not possible, proportionally more space is required for opening the access doors.

F

1.3 Roof frame

Roof frames are required for installing RoofVent[®] units in the roof. Please consider the following in the design process:

- The extract air grille and the access panels must be freely accessible under the roof.
- The roof frame must protrude at least 200 mm from the roof, so that no water can penetrate during a rainstorm or snowfall.

6

Notice

The connection module is available in 4 lengths for adapting to the local installation situation.

- The opening (dimension Z2) must be large enough to accommodate the below-roof unit.
- The condensate must be able to drain off freely.
- The roof frame must be flat and horizontal.
- Insulate the roof frame before installing the unit (e.g. 40 mm PU foam).
- Please observe the minimum distances when designing the roof frame. Change the orientation of the coil connections, if necessary.

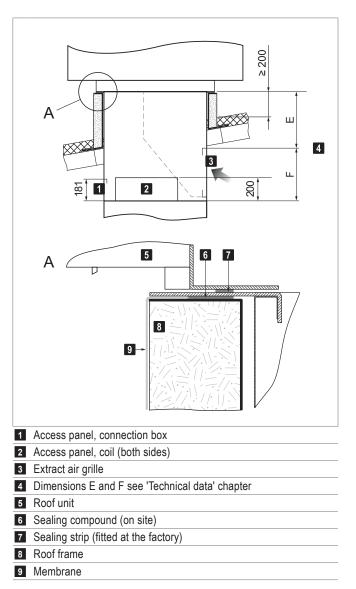


Fig. F3: Installation of RoofVent® units in the roof frame (dimensions in mm)

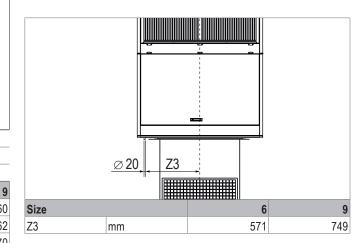


Table F2: Condensate drain of the plate heat exchanger (measured from unit centre)

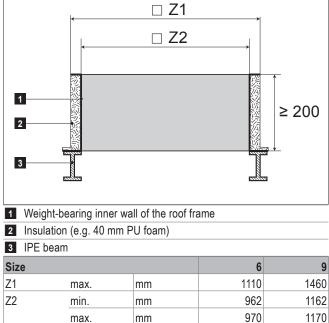


Fig. F2: Dimensions for roof frame

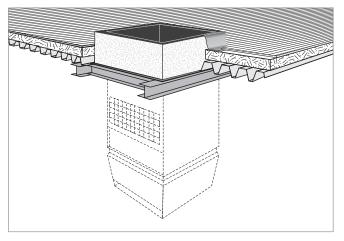
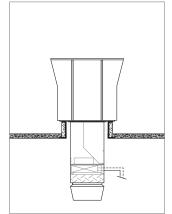


Fig. F4: Conceptual drawing of the roof frame


Depending on local conditions, 2 different types of roof frame can be used:

- Roof frame with straight side walls (where there is sufficient space)
- Roof frame with conical side walls (where a below-roof unit protruding into the room interferes with the craneways, for example)

Note

Ensure there is sufficient clearance for maintenance work.

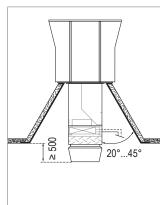


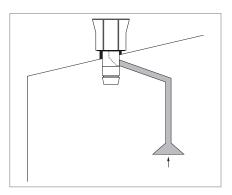
Fig. F5: Roof frame with straight side walls

Fig. F6: Roof frame with conical side walls

1.4 Unit installation

Proceed as follows to position the unit:

Below-roof unit


- Apply sealing compound to the roof frame.
- Screw in the transport eyes and attach the lifting gear.
- Transport the below-roof unit to the roof frame using a helicopter or crane.
- Turn the below-roof unit to the desired position.
- Hang the below-roof unit into the roof frame from above.

Roof unit

- Remove the cover caps on the unit roof.
- Screw in the transport eyes and attach the lifting gear.
- Transport the roof unit to the roof, correctly position the roof unit over the below-roof unit and set it down.
- Screw the the roof unit and below-roof unit together.
- Remove the transport eyes and refit the cover caps.

1.5 Duct connection

If necessary, it is possible to connect an extract air duct to the below-roof unit instead of the extract air grille.

Fig. F7: Extract air duct

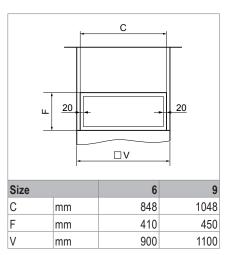


Table F3: Connection dimensions (in mm)

2 Hydraulic installation

2.1 Heating/cooling coil

The TopTronic® C control system is designed for a distributor circuit with separate hydraulic connection of the units; i.e. a mixing valve is installed in front of each unit. The diverting system is used as standard.

Requirements for the boiler system and the distributor circuit

- Hydraulically coordinate the pipework for the individual units within a control zone to ensure even distribution.
- The heating medium must be available at the mixing valve without delay in the required amount and temperature.
- The condensate separator in cooling units only functions while the fan is running. No coolant must be allowed to circulate in the coil when the unit is switched off.
- Depending on local conditions, check whether compensa-tors for linear expansion are required for the supply and return lines and/or articulated connections are required for the units
- Do not fasten any loads to the coil, e.g. by means of the flow or return lines.
- Insulate the hydraulic lines.

The TopTronic® C control system switches on the heating/ cooling pumps and the heating/cooling demand every day. This prevents the pumps from blocking in case of a long shutdown.

Requirements for mixing valves

- Use 3-way mixing valves with the following flow characteristics:
 - Equal percentage control path
 - Linear bypass
- The valve authority must be ≥ 0.5.
- The maximum run time of the valve actuator is 90 s.
- The valve actuator must be continuous, i.e. the stroke changes in proportion to the control voltage (0...10 VDC or 2...10 VDC).
- The valve actuator must be designed with a position response (0...10 VDC or 2...10 VDC).
- The maximum power consumption is 20 VA.
- Install the valve close to the unit (max. distance 2 m).

Requirements for changeover valves

Use changeover valves conforming to the following specification:

- 3-way changeover valves
- Supply voltage 24 V AC
- 1-wire control (0/24 V AC)
- Position response via limit switches (0°/90°)
- Power consumption max. 44 VA

2.2 Condensate connection

Condensate arising in cooling units must be removed via a condensate-proof line.

- Install and insulate the supplied trap on the condensate connection of the unit.
- Dimension the slope and cross-section of the condensate line so that no condensate backflow takes place.
- Make sure that the condensate produced is drained in compliance with local regulations.
- Route the condensate line from the pump directly upwards.

Notice

Use the 'Condensate pump' option for quick and easy hydraulic installation.

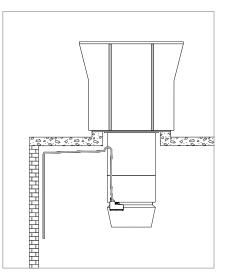


Fig. F8: Condensate line

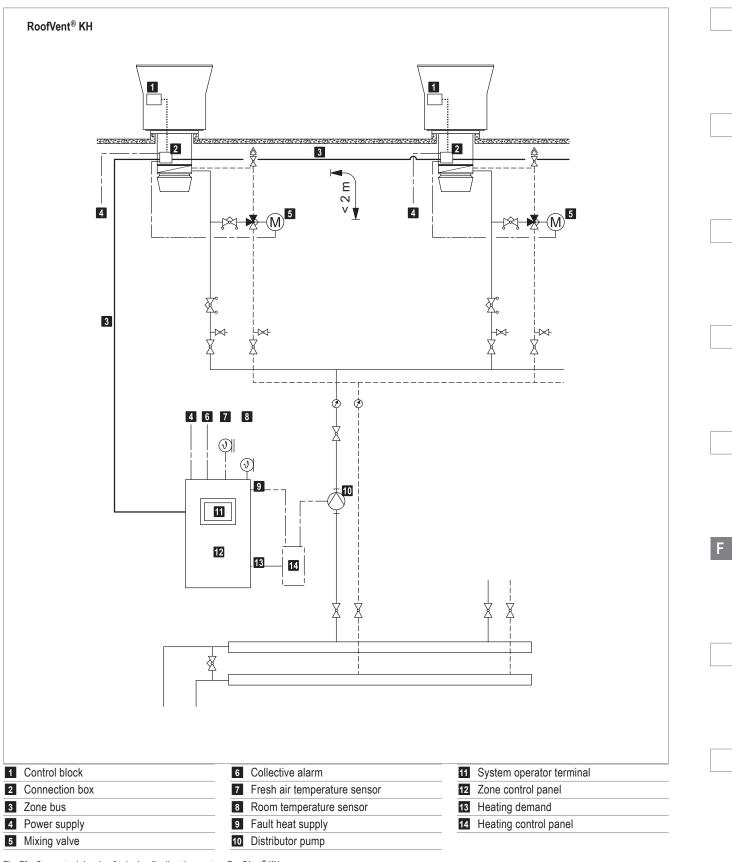


Fig. F9: Conceptual drawing for hydraulic diverting system $\operatorname{RoofVent}^{\otimes}\operatorname{KH}$

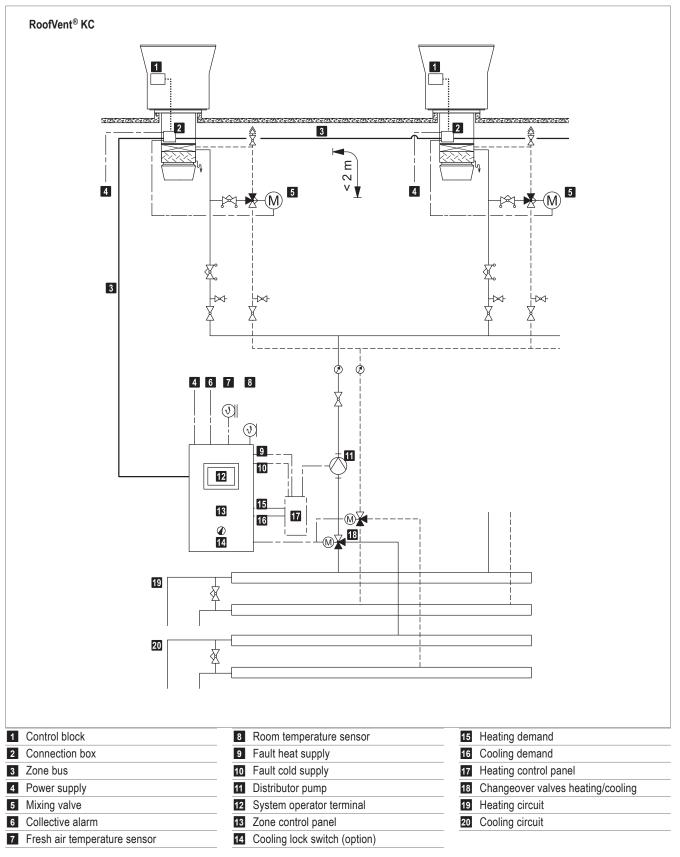


Fig. F10: Conceptual drawing for hydraulic diverting system ${\rm RoofVent}^{\otimes}\,{\rm KC}$

Hydraulic installation

Transport and installation

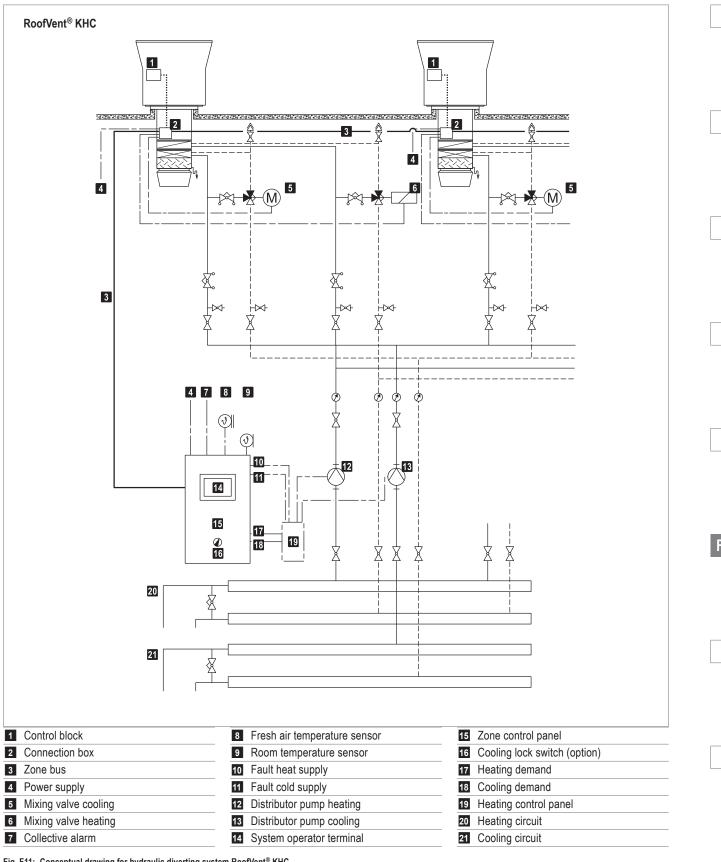


Fig. F11: Conceptual drawing for hydraulic diverting system ${\rm RoofVent}^{\circledast}\,{\rm KHC}$

3 Electrical installation

- The electrical installation must only be carried out by a qualified electrician.
- Observe the relevant regulations (e.g. EN 60204-1).
- Choose the dimensions of the cable cross sections in line with the applicable regulations.
- Route signal and bus lines separately from mains cables.
- Make sure the lightning protection system for the units or for the entire building is planned and carried out by professionals.
- Provide overload protection equipment on site in the mains connection line of the zone control panel.

Caution

2

Use an all-pole sensitive residual current circuit breaker for a leakage current protective circuit.

- Carry out the electrical installation according to the wiring diagram:
 - Power supply for RoofVent®
 - Zone bus based on system layout
 - Signal lines
- Make the plug connection from the connection box in the below-roof unit to the control block in the roof unit.
- Make the plug connections from the actuator of the Air-Injector, frost controller and supply air sensor to the connection box.
- Wire up mixing valves to the connection box.
- For mixing or injection system: Wire the pump to the connection box.

Component	Designation	Voltage	Cable		Comments
TopTronic [®] C System control	Power supply	3 × 400 VAC	NYM-J	5 × mm²	3-phase
Zone control panel					
		1 × 230 VAC	NYM-J	3 × mm²	1-phase
	Zone bus		J-Y(St)Y	2 × 2 × 0.8 mm	max. 1000 m length
	System bus		Ethernet	≥ CAT 5	For connecting several zone control panels
	Integration into the building		Ethernet	≥ CAT 5	BACnet, Modbus IP
	management system		J-Y(St)Y	2 × 2 × 0.8 mm	Modbus RTU
	Room temperature sensor		J-Y(St)Y	2 × 2 × 0.8 mm	Max. 250 m
	Fresh air temperature sensor		J-Y(St)Y	2 × 2 × 0.8 mm	Max. 250 m
	Additional room air sensors		J-Y(St)Y	2 × 2 × 0.8 mm	Max. 250 m
	Combination sensor room air quality, temperature and humidity		J-Y(St)Y	4 × 2 × 0.8 mm	Max. 250 m
	Collective alarm	Volt-free max. 230 VAC max. 24 VDC	NYM-O	2 × 1.5 mm ²	max. 3 A

Component	Designation	Voltage	Cable		Comments
	Power supply for units	3 × 400 VAC	NYM-J	5 × 1.5 mm² (min.)	RoofVent [®] units size 6
		3 × 400 VAC	NYM-J	5 × 4.0 mm ² (min.)	RoofVent [®] units size 9
		3 × 400 VAC	NYM-J	5 × 1.5 mm ² (min.)	TopVent [®] units
	Heating demand	Volt-free max. 250 VAC max. 24 VDC	NYM-O	2 × 1.5 mm ²	max. 8 A
	Setpoint heating demand	2-10 V DC	J-Y(St)Y	2 × 2 × 0.8 mm	Max. 250 m
	Fault heat supply	24 V AC	NYM-O	2 × 1.5 mm ²	max. 1 A
	Cooling demand	Volt-free max. 250 V AC max. 24 VDC	NYM-O	2 × 1.5 mm ²	max. 8 A
	Fault cold supply	24 VAC	NYM-O	2 × 1.5 mm ²	max. 1 A
	Distributor pump heat supply	3 × 400 V AC	NYM-J	4 × 1.5 mm² (min.)	Power supply 3-phase, max. 6 A
		1 × 230 VAC	NYM-J	3 × 1.5 mm ² (min.)	Power supply 1-phase, max. 6 A
			NYM-O	4 × 1.5 mm ²	Control line
	Distributor pump cold supply	3 × 400 VAC	NYM-J	4 × 1.5 mm² (min.)	Power supply 3-phase, max. 6 A
		1 × 230 VAC	NYM-J	3 × 1.5 mm ² (min.)	Power supply 1-phase, max. 6 A
			NYM-O	4 × 1.5 mm ²	Control line
	System operator terminal	24 V AC	NYM-J	3 × 1.5 mm ²	Power supply, 1 A fusing
	(if external)		Ethernet	≥ CAT 5	Communication
	Zone operator terminal (if external)	24 VAC	J-Y(St)Y	4 × 2 × 0.8 mm	Power supply, 1 A fusing, max. 250 m length
	External sensor values	0-10 V DC	J-Y(St)Y	2 × 2 × 0.8 mm	
	External set values	0-10 V DC	J-Y(St)Y	2 × 2 × 0.8 mm	
	Load shedding input	24 V AC	NYM-O	2 × 1.5 mm ²	max. 1 A
	Operating selector switch on terminal (analogue)	0-10 V DC	J-Y(St)Y	2 × 2 × 0.8 mm	
	Operating selector switch on terminal (digital)	0-10 V DC	J-Y(St)Y	5 × 2 × 0.8 mm	
	Operating selector button on terminal	24 VAC	J-Y(St)Y	5 × 2 × 0.8 mm	
	Forced off	24 VAC	NYM-O	2 × 1.5 mm ²	max. 1 A
	External enabling/setting heating/cooling		NYM-O	2 × 1.5 mm²	max. 1 A
	Changeover valve flow	24 VAC	NYM-O	7 × 1.5 mm²	
	Changeover valve return	24 VAC	NYM-O	7 × 1.5 mm²	
loofVent®	Power supply	3 × 400 VAC	NYM-J	5 × 1.5 mm² (min.)	RoofVent [®] units size 6
		3 × 400 VAC	NYM-J	5 × 4.0 mm² (min.)	RoofVent [®] units size 9
entilation unit	Zone bus		J-Y(St)Y	2 × 2 × 0.8 mm	max. 1000 m length
	Forced off	24 V AC	NYM-O	2 × 1.5 mm²	max. 1 A
	Forced heating	24 V AC	NYM-J	2 × 1.5 mm²	max. 1 A
	Mixing valve heating	24 V AC	NYM-O	5 × 1.0 mm²	
	Mixing valve cooling	24 VAC	NYM-O	4 × 1.0 mm ²	
	Heating pump	230 VAC	NYM-J	3 × 1.5 mm²	Power supply
		24 VAC	NYM-O	4 × 1.0 mm ²	Control line
	Cooling pump	230 VAC	NYM-J	3 × 1.5 mm²	Power supply
		24 VAC	NYM-O	4 × 1.0 mm ²	Control line

Table F4: Cable list for on-site connections

F

System design

1	Design example	.82
2	Maintenance schedule	.84
3	Checklist for project discussions	.85

G

1 Design example

Notice

Use the 'HK-Select' program to design Hoval Indoor Climate Systems. You can download it free of charge on the Internet.

Design data		Example
 Hall geometry (L × W × H) Required fresh air flow rate Internal heat gains (machines, light Heating and cooling with central en Optimisation of the ventilation quali 	$65 \times 42 \times 9 \text{ m}$ 42000 m ³ /h 33 kW \rightarrow Unit type KHC \rightarrow Unit size 6	
Design conditions heating:	115 kW – 12 °C 18 °C 20 °C / 40 %rh 60/40 °C	
Design conditions cooling:	58 kW 32 °C / 50 %rh 26 °C 28 °C / 40 %rh 8/14 °C	
Number of units Calculate the required number of un n = Fresh air flow rate / nominal air		n = 42000 / 7000 = 6 → 6 units (size 6)
	-	(115 – 33) / 6 = 13.7 kW per unit KHC-6A: 3.3 kW KHC-6B: 15.9 kW KHC-6C: 16.5 kW → Heating coil type B
Type of cooling coil ■ Calculate the required output for co Q _{C_req} = (transmission sensible ga ■ Use the 'Hoval HK-Select' selection mission consible gains under the si	(58 + 33) / 6 = 15.2 kW per unit KHC-6C: 16.5 kW	
mission sensible gains under the gi	ven design conditions and select the suitable coil type.	\rightarrow Cooling coil type C

Checks	
 Effective air flow rate V_{eff} = Nominal air flow rate × n 	7000 × 6 = 42000 m ³ /h 42000 m ³ /h ≥ 42000 m ³ /h \rightarrow OK
 Effective heat output Q_{H_effective} = Output for coverage of fabric heat losses × n 	15.9 × 6 = 95.4 kW 95.4 kW > (115 – 33) kW → OK
 Mounting height Calculate the actual mounting height (= distance between the floor and the bottom edge of the unit) and compare with the minimum and maximum mounting height. Y = Hall height – length of below-roof unit 	9000 – 2320 = 6680 mm $Y_{min} = 4.0 \text{ m} < 6.68 \text{ m}$ → OK $Y_{max} = 24.9 \text{ m} > 6.68 \text{ m}$ → OK
 Effective cooling capacity Q_{c_effective} = Output for coverage of transmission sensible gains × n 	16.5 × 6 = 99 kW 99 kW > (58 + 33) kW → OK
 Floor area reached Compare the floor area reached with the base area of the hall (L × W). A = Floor area reached × n 	661 × 6 = 3966 m ² 65 × 42 = 2730 m ² 3966 m ² > 2730 m ² → OK
Minimum and maximum clearances Determine the positioning of the units according to the number of units and the base area of the hall; check the minimum and maximum clearances.	$n = 6 = 3 \times 2$ Unit clearance in length: $X = 65 / 3 = 21.7 \text{ m}$ $X_{max} = 25.0 \ge 21.7 \text{ m}$ $X_{min} = 12.0 \le 21.7 \text{ m}$ $\rightarrow \text{ OK}$
	Unit clearance in width: $X = 42/2 = 21.0 \text{ m}$ $X_{max} = 25.0 \ge 21.0 \text{ m}$ $X_{min} = 12.0 \le 21.0 \text{ m}$ $\rightarrow \text{ OK}$

2 Maintenance schedule

Activity	Interval
Changing the fresh air and extract air filter	When the filter alarm is displayed, at least annually
Comprehensively checking function; cleaning and possibly repairing the RoofVent® unit	Annually by Hoval customer service

Table G1: Maintenance schedule

Project	Name	
Project No.	Function	
	Address	
	Tel.	
	Fax	
Date	E-mail	
nformation about the hall		
Application	Length	
уре	Width	
nsulation	Height	1
s the roof strong enough?	O yes O no	
Are there window areas?	O yes O no Percentage?	-
s there a crane?	O yes O no Height?	-
s there enough space for installation and servicing?	O yes O no	
Are there any voluminous installations or machines?	O yes O no	
Are pollutants present?	O yes O no Which?	-
If yes, are they heavier than air?	O yes O no	
s oil contained in the extract air?	O yes O no	
s oil contained in the extract air? s dust present?	O yes O no O yes O no Dust level?	_
s oil contained in the extract air? s dust present? s there high humidity?	O yes O no O yes O no Dust level? O yes O no How much?	-
s oil contained in the extract air? s dust present? s there high humidity? s the air volume balanced?	O yes O no O yes O no D yes O no How much? O yes O no	-
s oil contained in the extract air? s dust present? s there high humidity? s the air volume balanced? Are local machine extractions required?	O yes O no O yes O no O yes O no How much? Yes Yes </td <td>-</td>	-
s oil contained in the extract air? s dust present? s there high humidity? s the air volume balanced?	O yes O no O yes O no D yes O no How much? O yes O no	_

Fresh air flow rate?	m³/h	
Fresh air / hall area	m³/h per m²	
Air change rate		
Internal heat gains (machines,)	kW	
Heating and cooling		
Unit size		
Control zones		
Design conditions heating		
Standard outside temperature and humidity	0°	%
Room temperature	C	
 Extract air temperature and humidity 	O°	%
Fabric heat losses	kW	
Design conditions cooling		
 Standard outside temperature and humidity 	C	%
Room temperature	C	
 Extract air temperature and humidity 	O°	%
 Transmission sensible gains 	kW	

Further information

						1									1					
-	 	 					 	_			 			_						
																	_			
_	 	 	 		 	 	 		 		 	 				 	_	 	 	
																	_			
	 	 	 			 	 		 		 	 					_	 	 	
_																	-			
																	_			
+																	-			
_																				
-																				
	 	 				 	 		 			 		_				 	 	
																	_			
	 	 				 	 		 		 	 		_				 		
-							 					 		_		 	-		 	
																	_		_	
	 	 				 	 		 			 		_				 	 	
+					-										-					
+		 				 						 					_	 	 _	
																				G
-																				0
	 	 		 		 	 		 		 	 		_				 	 	
+					-												1			
+													_							
_		 					 		1									 		
+														_			-			
-																				
																	T			

Notes

Hoval 87

				1				1			1				1			1
-																		
-																		
													_					_
_	 			 	 	 		-		 		 				 		
_		 						_					_					
_	 		_		 	 		_		 			 _	_				
_																		
-								+					-					
_								+										—
								_					 _					_
_																		
_					 					 								
																		_
-					 							 		_				
_								-					_					
_					 			-		 			 _					
								_										
_					 			_		 		 	_					
_													_					
													 _					
-								+										-
+								+	_						_			
_								_					_					_
_		 				 							_					
													-					-

Hoval quality. You can count on us.

As a specialist in heating and air-conditioning technology, Hoval is your experienced partner for system solutions. For example, you can heat water with the sun's energy and the rooms with oil, gas, wood or a heat pump. Hoval ties together the various technologies and also integrates room ventilation into this system. You can be sure to save both energy and costs while protecting the environment.

Hoval is one of the leading international companies for indoor climate solutions. More than 70 years of experience continuously motivates us to design innovative system solutions. We export complete systems for heating, cooling and ventilation to more than 50 countries.

We take our responsibility for the environment seriously. Energy efficiency is at the heart of the heating and ventilation systems we design and develop.

Responsibility for energy and environment

Hoval Aktiengesellschaft | Austrasse 70 | 9490 Vaduz | hoval.com

Edition 2020-04 | 4219706

Hoval – your partner

Hoval